Analytical Geometry I

Geometry Level 2

Let ( u + v ) \vec{(u+v)} and ( 2 u v ) \vec{(2u-v)} be Euclidean vectors, and θ \theta the angle between them. If :

  • u 2 = 4 |\vec{u}|^2=4

  • v 2 = 4 |\vec{v}|^2=4

  • u v = 1 \vec{u} \cdot \vec{v}=-1

π/2 2π/3 π π/6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

- ( u + v ) ( 2 u v ) = \vec{(u+v)} \cdot \vec{(2u-v)}= < u + v , 2 u v < \vec{u}+\vec{v},\vec{2u}-\vec{v} > = < u , 2 u v \vec{u},\vec{2u}-\vec{v} > + < v , 2 u v \vec{v},\vec{2u}-\vec{v} > =

2 < u , u \vec{u},\vec{u} > - < u , v \vec{u},\vec{v} > + 2 < v , u \vec{v},\vec{u} > - < v , v \vec{v},\vec{v} >= 3 -3

- u + v = < u + v , u + v > = < u , u + v > + < v , u + v > = < u , u > + < u , v > + < v , u > + < v , v > = < u , u > + 2 < u , v > + < v , v > = 1 2 + 4 = 3 |\vec{u}+\vec{v}|= \sqrt{<\vec{u}+\vec{v},\vec{u}+\vec{v}>} =\sqrt{<\vec{u},\vec{u}+\vec{v}>+<\vec{v},\vec{u}+\vec{v}>}=\sqrt{<\vec{u},\vec{u}>+<\vec{u},\vec{v}>+<\vec{v},\vec{u}>+<\vec{v},\vec{v}>}=\sqrt{<\vec{u},\vec{u}>+2<\vec{u},\vec{v}>+<\vec{v},\vec{v}>}=\sqrt{1-2+4}=\sqrt{3}

- 2 u v = < 2 u v , 2 u v > = < 2 u , 2 u v > < v , 2 u v > = 4 < u , u > 2 < u , v > 2 < v , u > + < v , v > = 12 = 2 3 |\vec{2u}-\vec{v}|= \sqrt{<\vec{2u}-\vec{v},\vec{2u}-\vec{v}>}=\sqrt{<\vec{2u},\vec{2u}-\vec{v}>-<\vec{v},\vec{2u}-\vec{v}>}=\sqrt{4<\vec{u},\vec{u}>-2<\vec{u},\vec{v}>-2<\vec{v},\vec{u}>+<\vec{v},\vec{v}>}=\sqrt{12}=2\sqrt{3}

cos θ = u + v 2 u v u + v 2 u v . = \cos \theta = \frac{\overrightarrow{u+v} \cdot \overrightarrow{2u-v}}{\left | \overrightarrow{u+v} \right | \left | \overrightarrow{2u-v} \right | }. = 1 2 \frac{-1}{2}

that means θ \theta = 2 π / 3 =2π/3

This is wrong because |2u-v|=root(24) (not 12) and the scalar product (u+v)(2u-v) is +3, not -3. cos = 1/4.

lovro cupic - 1 month, 2 weeks ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...