a n + b n + c n + d n a^n+b^n+c^n+d^n

Algebra Level 3

a + b + c + d = 1 a 2 + b 2 + c 2 + d 2 = 2 a 3 + b 3 + c 3 + d 3 = 3 a 4 + b 4 + c 4 + d 4 = 4 a 5 + b 5 + c 5 + d 5 = p \begin{aligned} a\ +\ b\ +\ c\ +\ d\ & = 1 \\ a^2+b^2+c^2+d^2 & = 2 \\ a^3+b^3+c^3+d^3 & = 3 \\ a^4+b^4+c^4+d^4 & = 4 \\ a^5+b^5+c^5+d^5 & = p \end{aligned}

Find 24 p 24p .


The answer is 139.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 17, 2020

Let P n = a n + b n + c n + d n P_n = a^n+b^n+c^n+d^n , where n n is a positive integer, and S 1 = a + b + c + d S_1 = a+b+c+d , S 2 = a b + a c + a d + b c + b d + c d S_2 = ab+ac+ad+bc+bd+cd , S 3 = a b c + a b d + a c d + b c d S_3=abc+abd+acd+bcd , and S 4 = a b c d S_4=abcd . Using Newton's sums (identities) , we have:

P 1 = S 1 = 1 P 2 = S 1 P 1 2 S 2 = 1 2 S 1 = 2 S 2 = 1 2 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 2 + 1 2 + 3 S 3 = 3 S 3 = 1 6 P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 4 S 4 = 3 + 1 + 1 6 4 S 4 = 4 S 4 = 1 24 P 5 = S 1 P 4 S 2 P 3 + S 3 P 2 S 4 P 1 = 4 + 3 2 + 1 3 1 24 = 139 24 \begin{aligned} P_1 & = S_1 = 1 \\ P_2 & = S_1P_1 - 2S_2 = 1-2S_1 = 2 & \small \blue{\implies S_2 = - \frac 12} \\ P_3 & = S_1P_2 - S_2P_1+3S_3 = 2+\frac 12 + 3S_3 = 3 & \small \blue{\implies S_3 = \frac 16} \\ P_4 & = S_1P_3 - S_2P_2 + S_3P_1 -4S_4 = 3+1 + \frac 16 -4S_4 = 4 & \small \blue{\implies S_4 = \frac 1{24}} \\ P_5 & = S_1P_4 - S_2P_3 + S_3P_2 -S_4P_1 = 4 + \frac 32 + \frac 13 - \frac 1{24} = \frac {139}{24} \end{aligned}

Therefore, 24 p = 24 × 139 24 = 139 24p=24 \times \dfrac {139}{24} = \boxed{139} .

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...