And in the darkness bind them

Calculus Level 5

If

0 π / 2 ln ( cos x ) ln ( sin x ) d x \int_0^{\pi/2} \ln( \cos x) \ln( \sin x ) \, dx

can be expressed in the form A π M B ln P Q C π N D \dfrac{A\pi^M}{B}\ln^PQ - \dfrac{C\pi^N}{D} , for positive integers A , B , C , D , M , N , P A,B,C,D,M,N,P and Q Q , with gcd ( A , B ) = gcd ( C , D ) = 1 \gcd(A,B) = \gcd(C,D) = 1 and Q Q not a perfect power, find A + B + C + D + M + N + P + Q A+B+C+D+M+N+P+Q .


The answer is 60.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jake Lai
Nov 27, 2015

Solution sketch :

Using Parseval's theorem applied to f ( x ) = ln cos x 2 f(x) = \ln \cos \dfrac{x}{2} * (see footnotes for extra stuff), we have

1 π 0 π / 2 ln 2 cos x d x = 1 4 [ 1 π π π ln 2 cos x 2 d x ] = 1 4 [ 2 ln 2 2 + n = 1 1 n 2 ] Parseval’s theorem = ln 2 2 2 + π 2 24 \frac{1}{\pi} \int_0^{\pi/2} \ln^2 \cos x \ dx = \underbrace{\frac{1}{4} \left[ \frac{1}{\pi} \int_{-\pi}^{\pi} \ln^2 \cos \frac{x}{2} \ dx \right] = \frac{1}{4} \left[ 2\ln^22 + \sum_{n=1}^\infty \frac{1}{n^2} \right]}_{\text{Parseval's theorem}} = \frac{\ln^22}{2} + \frac{\pi^2}{24}

Now, let I = 0 π / 2 ln 2 cos x d x = 0 π / 2 ln 2 sin x d x = π ln 2 2 2 + π 3 24 \displaystyle I = \int_0^{\pi/2} \ln^2 \cos x \ dx = \int_0^{\pi/2} \ln^2 \sin x \ dx = \frac{\pi\ln^22}{2} + \frac{\pi^3}{24} for convenience's sake.

On the one hand, using the double-angle formula we have

0 π / 2 ( ln cos x + ln sin x ) 2 d x = 0 π / 2 ( ln sin ( 2 x ) ln 2 ) 2 d x = I + 3 π ln 2 2 2 \begin{aligned} \int_0^{\pi/2} (\ln \cos x + \ln \sin x)^2 \ dx &= \int_0^{\pi/2} (\ln \sin(2x) - \ln 2)^2 \ dx \\ &= I + \frac{3\pi \ln^22}{2} \end{aligned}

On the other hand, simply expanding gives

0 π / 2 ( ln cos x + ln sin x ) 2 d x = 0 π / 2 ln 2 cos x + 2 ln cos x ln sin x + ln 2 sin x d x = 2 I + 2 0 π / 2 2 ln cos x ln sin x d x \begin{aligned} \int_0^{\pi/2} (\ln \cos x + \ln \sin x)^2 \ dx &= \int_0^{\pi/2} \ln^2 \cos x + 2 \ln \cos x \ln \sin x + \ln^2 \sin x \ dx \\ &= 2I + 2\int_0^{\pi/2} 2 \ln \cos x \ln \sin x \ dx \end{aligned}

Equating the two we have

0 π / 2 2 ln cos x ln sin x d x = 3 π ln 2 2 4 I 2 \int_0^{\pi/2} 2 \ln \cos x \ln \sin x \ dx = \frac{3\pi \ln^22}{4} - \frac{I}{2}

Footnote : We have

1 π π π ln cos x 2 d x = 2 ln 2 and 1 π π π cos ( n x ) ln cos x 2 d x = ( 1 ) n n \frac{1}{\pi} \int_{-\pi}^{\pi} \ln \cos \frac{x}{2} \ dx = -2 \ln 2 \qquad \text{and} \qquad \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(nx) \ln \cos \frac{x}{2} \ dx = \frac{(-1)^n}{n}

(exercises for the reader).

Hints for exercises: First is an elementary definite integral, second is evaluable (probably) using Chebyshev polynomials and Wallis' integrals.

Jake Lai - 5 years, 6 months ago

I didn't completely understand this yet. Take an upvote first! +1

Pi Han Goh - 5 years, 6 months ago

Log in to reply

Why, thank you.

Jake Lai - 5 years, 6 months ago
Jon Haussmann
Nov 27, 2015

Ah... wasn't aware.. I guess free points?

Julian Poon - 5 years, 6 months ago

Here take an upvote! +1

Pi Han Goh - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...