Angle between cevians

Geometry Level 3

Let A B C ABC be a right-angled triangle at B B with A B > B C AB > BC . Suppose there exist points D D and E E on segments A B AB and B C BC respectively satisfying A D = B C AD = BC and B D = C E BD = CE . Find the acute angle between lines A E AE and C D CD in degrees.


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The required angle will always be same for any traingle ABC that satisfies the given condition.

So take a right angle triangle ABC with length AB just greater than length BC, i.e., (AB-BC) tends to an infinitesimally small number (very close to zero). The angle BAC will be 45 degrees.

Therefore the point D and E will be very close to point B and C respectively.

Hence, the angle between AE and CD will be equal to angle ACB which is 45 \boxed{45} degrees.

Eloy Machado
Apr 28, 2014

Let C B = a CB = a and B A = c BA = c . Then, D A = a DA = a and D B = c a DB = c - a ; C E = c a CE = c -a and E B = 2 a c EB = 2a - c .

By Pythagorean Theorem, E A 2 = 4 a 2 4 a c + 2 c 2 { EA }^{ 2 }=4{ a }^{ 2 }-4ac+2{ c }^{ 2 } and C D 2 = 2 a 2 2 a c + c 2 { CD }^{ 2 }=2{ a }^{ 2 }-2ac+ { c }^{ 2 } , so E A 2 = 2 C D 2 { EA }^{ 2 }=2{ CD }^{ 2 } .

Draw a parallel line to A E AE through D D . Let this line intersect C B CB at F F . By similar triangles, we get

F D = E A c a c = 2 C D c a c FD ={ EA }\cdot \frac { c-a }{ c } =\sqrt { 2 } CD\cdot \frac { c-a }{ c } and

F B = ( c a ) ( 2 a c ) c FB=\frac { (c-a)(2a-c) }{ c } .

Thus, F C = a F B = a ( c a ) ( 2 a c ) c = 2 a 2 2 a c + c 2 c = C D 2 c FC = a - FB = a - \frac { (c-a)(2a-c) }{ c } = \frac { 2{ a }^{ 2 }-2ac+ { c }^{ 2 } }{ c } = \frac { { CD }^{ 2 } }{ c }

Because our parallel line, the asked angle and angle CDF has same measure. Let C D F = α \angle CDF = \alpha . By cosine rule in C D F \triangle CDF we get:

C F 2 = C D 2 + F D 2 2 C D F D c o s α { CF }^{ 2 }={ CD }^{ 2 }+{ FD }^{ 2 }-2\cdot CD\cdot FD\cdot cos{ \alpha }

C D 4 c 2 = C D 2 + 2 C D 2 ( c a ) 2 c 2 2 C D 2 C D c a c c o s α \frac { { CD }^{ 4 } }{ { c }^{ 2 } } ={ CD }^{ 2 }+2{ CD }^{ 2 }\cdot \frac { { (c-a) }^{ 2 } }{ { c }^{ 2 } } -2\cdot CD\cdot \sqrt { 2 } \cdot CD\cdot \frac { c-a }{ c } cos{ \alpha }

dividing both sides by C D 2 {CD}^{2} and multiplying both sides by c 2 {c}^{2} we get:

C D 2 = c 2 + 2 ( c a ) 2 2 2 ( c a ) c c o s α { CD }^{ 2 }={ c }^{ 2 }+2{ (c-a) }^{ 2 }-2 \sqrt { 2 } (c-a) c\cdot cos{ \alpha }

Since C D 2 = 2 a 2 2 a c + c 2 { CD }^{ 2 }=2{ a }^{ 2 }-2ac+ { c }^{ 2 } we have:

2 2 ( c a ) c c o s α = c 2 + 2 ( c a ) 2 2 a 2 + 2 a c c 2 2 \sqrt { 2 } (c-a) c\cdot cos{ \alpha }={ c }^{ 2 }+2{ (c-a) }^{ 2 }-2{ a }^{ 2 }+2ac-{ c }^{ 2 }

2 2 ( c a ) c c o s α = 2 c 2 2 a c 2 \sqrt { 2 } (c-a) c\cdot cos{ \alpha }=2{ c }^{ 2 }-2ac

2 2 ( c a ) c c o s α = 2 c ( c a ) 2\sqrt { 2 } (c-a)c\cdot cos{ \alpha }=2c(c-a)

Then, 2 c o s α = 1 \sqrt { 2 } cos{ \alpha }=1 and thus, c o s α = 1 2 = 2 2 cos{ \alpha }=\frac { 1 }{ \sqrt { 2 } } =\frac { \sqrt { 2 } }{ 2 }

therefore, α = 45 ° \alpha = \boxed{45°} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...