Angle between two surfaces!

Geometry Level 4

Let O O be the center of square A B C D ABCD and construct a circle centered at O O whose circumference is equal to the perimeter of the square. Folding the arc of the semi-circle at a right angle, as shown above, the radius of the semicircle becomes the height of the right square pyramid.

Find the acute angle made between two adjacent faces (in degrees).


The answer is 67.57253352.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

David Vreken
Dec 31, 2020

Let the sides of the square be l l and let the radius of the circle (and the height of the pyramid) be h h .

Since the circle's circumference is equal to the perimeter of the square, 4 l = 2 π h 4l = 2\pi h , or h = 2 l π h = \frac{2l}{\pi} .

The acute dihedral angle of a square pyramid with a base side of l l and a height of h h is:

θ = cos 1 ( l 2 l 2 + 4 h 2 ) = cos 1 ( l 2 l 2 + 4 ( 2 l π ) 2 ) = cos 1 ( π 2 π 2 + 16 ) 67.57253352 ° \theta = \cos^{-1}\bigg(\cfrac{l^2}{l^2 + 4h^2}\bigg) = \cos^{-1}\bigg(\cfrac{l^2}{l^2 + 4(\frac{2l}{\pi})^2}\bigg) = \cos^{-1}\bigg(\cfrac{\pi^2}{\pi^2 + 16}\bigg) \approx \boxed{67.57253352°}

Let point Q Q on P D PD be such that A Q AQ and C Q CQ are perpendicular to P D PD . Then A Q C = θ \angle AQC = \theta is the angle between the two faces of the pyramid.

Let the common perimeter be 2 π 2\pi . Then the radius or the height O P = 1 OP = 1 and the side length the square A B C D ABCD is π 2 \dfrac \pi 2 , B D = π 2 BD = \dfrac \pi{\sqrt 2} , O D = π 2 2 OD = \dfrac \pi{2\sqrt 2} , and P D = O P 2 + O D 2 = 1 + π 2 8 PD = \sqrt{OP^2+OD^2} = \sqrt{1+\dfrac {\pi^2}8} . cos P D A = 1 2 A D P D = π 16 + 2 π 2 sin P D A = 16 + π 2 16 + 2 π 2 \cos \angle PDA = \dfrac {\frac 12 AD}{PD} = \dfrac \pi{\sqrt{16+2\pi^2}} \implies \sin \angle PDA = \sqrt{\dfrac {16+\pi^2}{16+2\pi^2}} . And we have:

sin θ 2 = A O A Q = A O A D sin P D A = 16 + 2 π 2 32 + 2 π θ = 2 sin 1 16 + 2 π 2 32 + 2 π 112.42746647 7 \begin{aligned} \sin \frac \theta 2 & = \frac {AO}{AQ} = \frac {AO}{AD \sin \angle PDA} = \sqrt{\frac {16+2\pi^2}{32+2\pi}} \\ \implies \theta & = 2 \sin^{-1} \sqrt{\frac {16+2\pi^2}{32+2\pi}} \approx 112.427466477^\circ \end{aligned}

Therefore the acute angle between the two faces is 18 0 112.42746647 7 67.6 180^\circ - 112.427466477^\circ \approx \boxed{67.6}^\circ .

Rocco Dalto
Dec 30, 2020

Let a a be side of square base A B C D ABCD and r r radius of the circle.

Let O ( 0 , 0 , 0 ) , A : ( a 2 , a 2 , 0 ) , B : ( a 2 , a 2 , 0 ) , C : ( a 2 , a 2 , 0 ) , D : ( a 2 , a 2 , 0 ) O(0,0,0), A:(-\dfrac{a}{2},-\dfrac{a}{2},0), B:(-\dfrac{a}{2},\dfrac{a}{2},0), C:(\dfrac{a}{2},\dfrac{a}{2},0), D:(\dfrac{a}{2},-\dfrac{a}{2},0) and P ( 0 , 0 , r ) P(0,0,r)

B A = 0 i + a j + 0 k , B P = a 2 i + a 2 j + r k \vec{BA} = 0\vec{i} + a\vec{j} + 0\vec{k}, \vec{BP} = \dfrac{a}{2}\vec{i} + -\dfrac{a}{2}\vec{j} + r\vec{k} and B C = a i + 0 j + 0 k \vec{BC} = a\vec{i} + 0\vec{j} + 0\vec{k}

u = B P X B A = a r i + 0 j + a 2 2 k \implies \vec{u} =\vec{BP} X \vec{BA} = -ar\vec{i} + 0\vec{j} + \dfrac{a^2}{2}\vec{k} and v = B P X B C = 0 i + a j + a 2 2 k \vec{v} = \vec{BP} X \vec{BC} = 0\vec{i} + a\vec{j} + \dfrac{a^2}{2}\vec{k}

u v = a 4 4 = 4 a 2 r 2 + a 4 4 4 a 2 r 2 + a 4 4 cos ( θ ) = 4 a 2 r 2 + a 4 4 cos ( θ ) \implies \vec{u} \cdot \vec{v} = \dfrac{a^4}{4} = \sqrt{\dfrac{4a^2r^2 + a^4}{4}} \sqrt{\dfrac{4a^2r^2 + a^4}{4}} \cos(\theta) = \dfrac{4a^2r^2 + a^4}{4} \cos(\theta) \implies

a 4 4 = a 2 4 ( 4 r 2 + a 2 ) cos ( θ ) cos ( θ ) = a 2 4 r 2 + a 2 \dfrac{a^4}{4} = \dfrac{a^2}{4}(4r^2 + a^2)\cos(\theta) \implies \cos(\theta) = \dfrac{a^2}{4r^2 + a^2}

and 4 a = 2 π r r = 2 a π cos ( θ ) = π 2 16 + π 2 θ = arccos ( π 2 16 + π 2 ) 67.5725335 2 4a = 2\pi r \implies r = \dfrac{2a}{\pi} \implies \cos(\theta) = \dfrac{\pi^2}{16 + \pi^2} \implies \theta = \arccos(\dfrac{\pi^2}{16 + \pi^2}) \approx \boxed{67.57253352^{\circ}} .

Nice question and solution! You may want to specify that you want the acute angle between the adjacent faces (and not the obtuse angle).

David Vreken - 5 months, 1 week ago

Thanks. I added acute angle.

Rocco Dalto - 5 months, 1 week ago
Hongqi Wang
Jan 2, 2021

Let E is mid point of AD, F at lateral edge PD and A F P D , C F P D AF \perp PD, CF \perp PD . Then θ = A F C \theta = \angle AFC is dihedral angles of adjacent faces. Side length of square is a a , radius of circle is r r :

2 π r = 4 a r = 2 π a P E = r 2 + ( a 2 ) 2 = r 2 + a 2 4 P D = r 2 + ( 2 2 a ) 2 = r 2 + a 2 2 S P A D = 1 2 A D × P E = 1 2 A F × P D A F = A D × P E P D = a r 2 + a 2 4 r 2 + a 2 2 C F = A F A C 2 = A F 2 + C F 2 2 A F C F cos θ = 2 A F 2 2 A F 2 cos θ cos θ = A C 2 2 A F 2 2 A F 2 = A C 2 2 A F 2 1 = 2 a 2 2 a 2 ( r 2 + a 2 4 ) r 2 + a 2 2 1 = 4 r 2 + 2 a 2 4 r 2 + a 2 1 = a 2 4 r 2 + a 2 = a 2 4 ( 2 π ) 2 a 2 + a 2 = π 2 16 + π 2 θ = cos 1 π 2 16 + π 2 67.57 ° \begin{aligned} 2 \pi r &= 4a \implies r = \dfrac 2{\pi} a \\ PE &= \sqrt {r^2 + (\dfrac a2)^2 } = \sqrt {r^2 + \dfrac {a^2}4} \\ PD &= \sqrt {r^2 + (\dfrac {\sqrt 2}2a)^2} = \sqrt {r^2 + \dfrac {a^2}2} \\ S_{\triangle PAD} &= \dfrac 12 AD \times PE = \dfrac 12 AF \times PD \\ \therefore AF &= \dfrac {AD \times PE}{PD} = \dfrac {a \sqrt {r^2 + \dfrac {a^2}4}}{\sqrt {r^2 + \dfrac {a^2}2}} \\ CF &= AF \\ AC^2 &= AF^2 + CF^2 - 2 \cdot AF \cdot CF \cdot \cos {\theta} \\ &= 2 AF^2 - 2 AF^2 \cos {\theta} \\ \therefore \cos \theta &= \dfrac {AC^2 - 2 AF^2}{2 AF^2} = \dfrac {AC^2}{2 AF^2} - 1 \\ &= \dfrac {2a^2}{\dfrac {2a^2 (r^2 + \dfrac {a^2}4)}{r^2 + \dfrac {a^2}2}} - 1 \\ &= \dfrac {4r^2 + 2a^2}{4r^2 + a^2} - 1 = \dfrac {a^2}{4r^2 + a^2} \\ &= \dfrac {a^2}{4(\dfrac {2}{\pi})^2 a^2 + a^2} = \dfrac {\pi ^2}{16 + \pi ^2} \\ \theta &= \cos^{-1} {\dfrac {\pi ^2}{16 + \pi ^2}} \approx \boxed {67.57 \degree} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...