Angle chase #1

Geometry Level pending

Given four non-zero vectors a , b , c \vec{a},\vec{b},\vec{c} and d \vec{d} . The vectors a , b \vec{a},\vec{b} and c \vec{c} are coplanar but non- collinear pair by pair and vector d \vec{d} is not coplanar with vectors a , b \vec{a},\vec{b} and c \vec{c} and ( a ^ b ^ ) = ( b ^ c ^ ) = 1 2 , ( d ^ a ^ ) = cos α (\hat{a}\cdot \hat{b})=(\hat{b} \cdot \hat{c})= \dfrac{1}{2} , (\hat{d}\cdot \hat{a}) = \cos \alpha and ( d ^ b ^ ) = cos β (\hat{d} \cdot \hat{b}) =\cos \beta .

If ( d ^ c ^ ) = ( m cos β + n cos α ) (\hat{d}\cdot\hat{c})= (m\cos \beta +n\cos \alpha) , then find m n m-n


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let d ^ = λ 1 a ^ + λ 2 b ^ + λ 3 ( a ^ × b ^ ) \hat{d}=\lambda_{1} \hat{a} +\lambda_{2} \hat{b} + \lambda_{3} (\hat{a} \times \hat{b})

d ^ a ^ = λ 1 + λ 2 2 λ 1 + λ 2 2 = cos α \hat{d} \cdot \hat{a}= \lambda_{1} +\dfrac{\lambda_{2}}{2} \implies \lambda_{1} +\dfrac{\lambda_{2}}{2} = \cos \alpha

d ^ b ^ = λ 2 + λ 1 2 λ 2 + λ 1 2 = cos β \hat{d} \cdot \hat{b}= \lambda_{2} +\dfrac{\lambda_{1}}{2} \implies \lambda_{2} +\dfrac{\lambda_{1}}{2} = \cos \beta

Solving the above equations, we get:

λ 1 = 2 3 ( 2 cos α cos β ) \lambda_{1}=\dfrac{2}{3}(2\cos \alpha - \cos \beta)

λ 2 = 2 3 ( 2 cos β cos α ) \lambda_{2}=\dfrac{2}{3}(2\cos \beta - \cos \alpha)

Now, calculate d ^ c ^ \hat{d}\cdot\hat{c} :

d ^ c ^ = λ 1 2 + λ 2 2 \hat{d}\cdot\hat{c} = \dfrac{-\lambda_{1}}{2}+\dfrac{\lambda_2}{2}

d ^ c ^ = cos β cos α \hat{d}\cdot\hat{c}= \cos \beta - \cos \alpha

m = 1 \therefore \boxed{m=1} and n = 1 \boxed{n=-1}

m n = 2 \implies \boxed{m-n=2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...