Angle Chasing

Geometry Level 4

In a quadrilateral A B C D ABCD , D A C = 9 8 \angle DAC = 98^\circ , D B C = 8 2 \angle DBC = 82^\circ , B C D = 7 0 \angle BCD = 70^\circ , and B C = A D BC = AD . Find the measure of A C D \angle ACD in degrees.


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let E E be a point such that B C E D BCED is a || gm. Now, B C = D E , D C E = B D C = 2 8 BC = DE, \angle DCE = \angle BDC = 28^{\circ} and also, D E C = D B C = 8 2 \angle DEC = \angle DBC = 82^{\circ} . Therefore, D E C + D A C = 18 0 = > A C E D \angle DEC + \angle DAC = 180^{\circ} => ACED is a cyclic quadrilateral, also B C = A D = D E = > A C D = D E C = 2 8 BC = AD = DE => \angle ACD = \angle DEC = 28^{\circ}

there is typo in the first line

Ayush G Rai - 3 years, 11 months ago

Log in to reply

Ok rectified ! Thanks!!!!!!!!!!!!!!!!!!!!!!!!!!!

Vishwash Kumar ΓΞΩ - 3 years, 11 months ago

Let B C = A D = 1 BC=AD=1 and A C D = θ \angle ACD = \theta .

We note that B D C = 18 0 D B C B C D = 18 0 8 2 7 0 = 2 8 \angle BDC = 180^\circ - \angle DBC - \angle BCD = 180^\circ - 82^\circ - 70^\circ = 28^\circ . Using sine rule , we have:

D C sin D B C = B C sin B D C D C sin 8 2 = 1 sin 2 8 D C = sin 8 2 sin 2 8 \begin{aligned} \frac {DC}{\sin \angle DBC} & = \frac {BC}{\sin \angle BDC} \\ \frac {DC}{\sin 82^\circ} & = \frac 1{\sin 28^\circ} \\ \implies DC & = \frac {\sin 82^\circ}{\sin 28^\circ} \end{aligned}

Using sine rule again,

sin A C D A D = sin D A C D C Note that D C = sin 8 2 sin 2 8 sin θ 1 = sin 9 8 × sin 2 8 sin 8 2 Note that sin ( 18 0 x ) = sin x sin θ = sin 8 2 × sin 2 8 sin 8 2 sin θ = sin 2 8 θ = 28 \begin{aligned} \frac {\sin \angle ACD}{AD} & = \frac {\sin \angle DAC}{\color{#3D99F6}DC} & \small \color{#3D99F6} \text{Note that }DC = \frac {\sin 82^\circ}{\sin 28^\circ} \\ \frac {\sin \theta}1 & = \frac {\color{#D61F06}\sin 98^\circ \times \color{#3D99F6} \sin 28^\circ}{\color{#3D99F6}\sin 82^\circ} & \small \color{#3D99F6} \text{Note that } \sin (180^\circ -x) = \sin x \\ \sin \theta & = \frac {\color{#D61F06}\sin 82^\circ \times \sin 28^\circ}{\sin 82^\circ} \\ \sin \theta & = \sin 28^\circ \\ \implies \theta & = \boxed{28}^\circ \end{aligned}

Ahmad Saad
Jul 9, 2017

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...