Angle Triangulated

Geometry Level pending

In square A B C D ABCD , F A E \triangle FAE is tangent to right G H I \bigtriangleup GHI , G G is the midpoint of E F \overline{EF} , G H G I \overline{GH} \perp \overline{GI} , D A F = 2 7 \angle DAF = 27^{\circ} , B A E = 1 8 \angle BAE = 18^{\circ} , and E H G = 8 1 \angle EHG = 81^{\circ} .

Find H I G \angle HIG in degrees.

2 7 27^{\circ} 3 6 36^{\circ} 4 5 45^{\circ} 5 4 54^{\circ} 7 2 72^{\circ} 6 3 63^{\circ} None of the above.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sathvik Acharya
Jan 25, 2021

Construction: Rotate A B E \triangle ABE about point A A by an angle of 9 0 90^{\circ} , to form A D E \triangle ADE' ( B D , E E ) (B\to D,\; E\to E') In A F E \triangle AFE and A F E \triangle AFE' , E A F = 9 0 D A F B A E = 4 5 , F A E = D A F + D A E = 4 5 , A E = A E \begin{aligned} \angle EAF=90^{\circ}-\angle DAF-\angle BAE=45^{\circ}, \;\; &\angle FAE'=\angle DAF+\angle DAE'=45^{\circ}, \;\; AE=AE' \\ \end{aligned} A F E A F E A E F = A E D = A E B = 7 2 \therefore \triangle AFE\cong \triangle AFE' \implies \angle AEF=\angle AE'D=\angle AEB=72^{\circ} Since H G I = I C H = 9 0 \angle HGI=\angle ICH=90^{\circ} , quadrilateral G H C I GHCI is cyclic , G C H = G I H = α \angle GCH=\angle GIH=\alpha Also, G G is the midpoint of the hypotenuse ( E F EF ) of right-triangle E C F ECF , G F = G E = G C G E C = G C H = α GF=GE=GC \implies \angle GEC=\angle GCH=\alpha The points B , E , C B, E, C lie on a straight line, B E A + A E F + C E F = 18 0 7 2 + 7 2 + α = 18 0 α = 3 6 \begin{aligned} \angle BEA+\angle AEF+\angle CEF&=180^{\circ} \\ 72^{\circ}+72^{\circ}+\alpha&=180^{\circ} \\ \implies \boxed{\alpha=36^{\circ}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...