Angles

Geometry Level 2

A P R = R P B \angle{APR} = \angle{RPB} and D Q R = R Q A \angle{DQR} = \angle{RQA}

Find P R Q \angle{PRQ} .


The answer is 90.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sakanksha Deo
Mar 17, 2015

Since in a triangle, sum of all angle = 180

Therefore,

P + Q = 360 2 B A D A B C A D C = 180 + D C B ( B A D + A D C + A B C ) \angle{P} + \angle{Q} = 360 - 2 \angle{BAD} - \angle{ABC} - \angle{ADC} = 180 + \angle{DCB} - ( \angle{BAD} + \angle{ADC} + \angle{ABC} ) ...... (1)

Now,

P R Q = P C Q 1 2 ( P + Q ) \angle{PRQ} = \angle{PCQ} - \frac{1}{2} ( \angle{P} + \angle{Q} )

P R Q = B C D 1 2 [ 180 + B C D ( B A D + A B C + A D C ) ] \Rightarrow \angle{PRQ} = \angle{BCD} - \frac{1}{2} [ 180 + \angle{BCD} - ( \angle{BAD} + \angle{ABC} + \angle{ADC} )]

P R Q = 1 2 ( A B C + A D C + B A D + B C D ) 90 \Rightarrow \angle{PRQ} = \frac{1}{2} ( \angle{ABC} + \angle{ADC} + \angle{BAD} + \angle{BCD} ) - 90

P R Q = 180 90 = 90 \Rightarrow \angle{PRQ} = 180 - 90 = \large \boxed{90}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...