Angles, Arcs and Areas!

Geometry Level 4

A B C \triangle{ABC} is inscribed in a circle, with m C = 4 5 , m B D A = 6 0 , D C = 1 m\angle{C} = 45^{\circ}, m\angle{BDA} = 60^{\circ}, \overline{DC} = 1 and B D = 2. \\ \overline{BD} = 2. Let A c A_{c} be area of the above circle. If A c + m ( A R C ^ ) = a π b A_{c} + m(\widehat{ARC}) = \dfrac{a\pi}{b} , where m ( A R C ^ ) m(\widehat{ARC}) is in radians, and a a and b b are coprime positive integers, find a + b a + b .


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Feb 21, 2021

By the exterior angle theorem on A D C \triangle ADC , D A C = B D A D C A = 60 ° 45 ° = 15 ° \angle DAC = \angle BDA - \angle DCA = 60° - 45° = 15° .

By the law of cosines on A D C \triangle ADC , A D sin D C A = D C sin D A C \cfrac{AD}{\sin \angle DCA} = \cfrac{DC}{\sin \angle DAC} , or A D sin 45 ° = 1 sin 15 ° \cfrac{AD}{\sin 45°} = \cfrac{1}{\sin 15°} , so A D = sin 45 ° sin 15 ° = 3 + 1 AD = \cfrac{\sin 45°}{\sin 15°} = \sqrt{3} + 1 .

Now construct equilateral E B D \triangle EBD where E E is on A D AD :

Then B E A = 180 ° B E D = 180 ° 60 ° = 120 ° \angle BEA = 180° - \angle BED = 180° - 60° = 120° and A E = A D E D = 3 + 1 2 = 3 1 AE = AD - ED = \sqrt{3} + 1 - 2 = \sqrt{3} - 1 .

Since A E B = A D C = 120 ° \angle AEB = \angle ADC = 120° , and B E E A = A D D C = 3 + 1 \cfrac{BE}{EA} = \cfrac{AD}{DC} = \sqrt{3} + 1 , B E A A D C \triangle BEA \sim \triangle ADC by SAS similarity, so E B A = D A C = 15 ° \angle EBA = \angle DAC = 15° and E A B = D C A = 45 ° \angle EAB = \angle DCA = 45° .

That means A B C = E B A + E B D = 15 ° + 60 ° = 75 ° \angle ABC = \angle EBA + \angle EBD = 15° + 60° = 75° and B A C = E A B + D A C = 45 ° + 15 ° = 60 ° \angle BAC = \angle EAB + \angle DAC = 45° + 15° = 60° .

Since A B C = 75 ° \angle ABC = 75° , m ( A R C ^ ) = 2 75 ° = 150 ° = 150 ° π 180 ° = 5 π 6 m(\widehat{ARC}) = 2 \cdot 75° = 150° = \cfrac{150°\pi}{180°} = \cfrac{5\pi}{6} .

Since A B C \triangle ABC is circumscribed in the circle, the circle's radius is R = B C 2 sin B A C = 3 2 sin 60 ° = 3 R = \cfrac{BC}{2 \sin \angle BAC} = \cfrac{3}{2 \sin 60°} = \sqrt{3} , and its area is A c = π R 2 = 3 π A_c = \pi R^2 = 3\pi .

Therefore, A c + m ( A R C ^ ) = 3 π + 5 π 6 = 23 π 6 A_c + m(\widehat{ARC}) = 3\pi + \cfrac{5\pi}{6} = \cfrac{23\pi}{6} , which means a = 23 a = 23 , b = 6 b = 6 , and a + b = 29 a + b = \boxed{29} .

Rocco Dalto
Feb 20, 2021

sin ( 1 5 ) = sin ( 4 5 3 0 ) = 3 1 2 2 \sin(15^{\circ}) = \sin(45^{\circ} - 30^{\circ}) = \dfrac{\sqrt{3} - 1}{2\sqrt{2}}

Using the law of sines on A D C \triangle{ADC} \implies

A D sin ( 4 5 ) = 1 sin ( 1 5 ) A D = 2 3 1 = 3 + 1 \dfrac{\overline{AD}}{\sin(45^{\circ})} = \dfrac{1}{\sin(15^{\circ})} \implies \overline{AD} = \dfrac{2}{\sqrt{3} - 1} = \sqrt{3} + 1

and

A C sin ( 12 0 ) = 3 + 1 sin ( 4 5 ) A C = 3 + 3 2 \dfrac{\overline{AC}}{\sin(120^{\circ})} = \dfrac{\sqrt{3} + 1}{\sin(45^{\circ})} \implies \overline{AC} = \dfrac{3 + \sqrt{3}}{\sqrt{2}}

Using the law of cosines on A B C \triangle{ABC} with included C = 4 5 \angle{C} = 45^{\circ} \implies
A B = 6 \overline{AB} = \sqrt{6}

Using the law of sines on A B D \triangle{ABD} \implies

6 sin ( 6 0 ) = 3 + 1 sin ( θ ) sin ( θ ) = 3 + 1 2 2 θ = 7 5 \dfrac{\sqrt{6}}{\sin(60^{\circ})} = \dfrac{\sqrt{3} + 1}{\sin(\theta)} \implies \sin(\theta) = \dfrac{\sqrt{3} + 1}{2\sqrt{2}} \implies \theta = 75^{\circ}

m ( A R C ^ ) = 15 0 \implies m(\widehat{ARC}) = 150^{\circ} and converting to radians m ( A R C ^ ) = 5 π 6 \implies \boxed{m(\widehat{ARC}) = \dfrac{5\pi}{6}}

To find the area A c A_{c} of the above circle we use coordinates below with m B A D = 4 5 m B A C = 6 0 m\angle{BAD} = 45^{\circ} \implies m\angle{BAC} = 60^{\circ}

A ( 0 , 0 ) , B ( 6 cos ( 6 0 ) , 6 sin ( 6 0 ) ) = ( 3 2 , 3 2 ) A(0,0), B(\sqrt{6}\cos(60^{\circ}), \sqrt{6}\sin(60^{\circ})) = (\sqrt{\dfrac{3}{2}}, \dfrac{3}{\sqrt{2}}) and C ( 3 + 3 2 , 0 ) C(\dfrac{3 + \sqrt{3}}{\sqrt{2}}, 0)

( 1 ) x 0 2 + y 0 2 = r 2 (1) x_{0}^2 + y_{0}^2 = r^2

( 2 ) x 0 2 ( 3 + 3 ) 2 x 0 + 6 + 3 3 + y 0 2 = r 2 (2) x_{0}^2 - (3 + \sqrt{3})\sqrt{2}x_{0} + 6 + 3\sqrt{3} + y_{0}^2 = r^2

( 3 ) x 0 2 6 x 0 + y 0 2 3 2 y 0 + 6 = r 2 (3) x_{0}^2 - \sqrt{6}x_{0} + y_{0}^2 - 3\sqrt{2}y_{0} + 6 = r^2

Subtracting ( 1 ) (1) from ( 2 ) (2) we obtain x 0 = ( 3 + 3 ) 2 4 x_{0} = \dfrac{(3 + \sqrt{3})\sqrt{2}}{4}

Subtracting ( 1 ) (1) from ( 3 ) (3) we obtain y 0 = ( 3 3 ) 2 4 y_{0} = \dfrac{(3 -\sqrt{3})\sqrt{2}}{4}

r 2 = 3 r = 3 A c = 3 π \implies r^2 = 3 \implies r = \sqrt{3} \implies \boxed{A_{c} = 3\pi} \implies A c + m ( A R C ^ ) = 23 π 6 = a π b A_{c} + m(\widehat{ARC}) = \dfrac{23\pi}{6} = \dfrac{a\pi}{b}

a + b = 29 \implies a + b = \boxed{29} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...