Angles inside a triangle

Geometry Level 4

Triangle A B C ABC is isosceles with C A = C B . CA=CB. A B D = 6 0 \angle ABD=60^\circ , B A E = 5 0 \angle BAE=50^\circ , and C = 2 0 \angle C=20^\circ . Find the measure of E D B \angle EDB in degrees.

Notes:

  1. The figure is not drawn to scale.
  2. Don't draw the figure true to scale and measure angle E D B EDB . You must calculate.
4 0 40^\circ 2 0 20^\circ 3 0 30^\circ 3 5 35^\circ

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 26, 2017

Since A B C \triangle ABC is isosceles with C A = C B CA=CB C A B = C B A = 18 0 2 0 2 = 8 0 \implies \angle CAB = \angle CBA = \dfrac {180^\circ - 20^\circ}2 = 80^\circ . Therefore, B E A = 18 0 8 0 5 0 = 5 0 \angle BEA = 180^\circ - 80^\circ-50^\circ = 50^\circ implies that A B E \triangle ABE is isosceles with A B = E B AB=EB . And also E B D = 8 0 6 0 = 2 0 \angle EBD = 80^\circ - 60^\circ = 20^\circ implies that B C D \triangle BCD is isosceles with B D = C D BD=CD .

Let E D B = θ \angle EDB = \theta and A B = E B = 1 AB=EB=1 . Using sine rule on A B D \triangle ABD :

B D sin B A D = A B sin A D B Note that A D B = 18 0 8 0 6 0 = 4 0 B D sin 8 0 = 1 sin 4 0 B D = sin 8 0 sin 4 0 Note that sin 8 0 = 2 sin 4 0 cos 4 0 = 2 cos 4 0 \begin{aligned} \frac {BD}{\sin \angle BAD} & = \frac {AB}{\sin \color{#3D99F6} \angle ADB} & \small \color{#3D99F6} \text{Note that }\angle ADB = 180^\circ - 80^\circ - 60^\circ = 40^\circ \\ \frac {BD}{\sin 80^\circ} & = \frac 1{\sin \color{#3D99F6} 40^\circ} \\ \implies BD & = \frac { \color{#3D99F6} \sin 80^\circ}{\sin 40^\circ} & \small \color{#3D99F6} \text{Note that } \sin 80^\circ = 2 \sin 40^\circ \cos 40^\circ \\ & = 2\cos 40^\circ \end{aligned}

Using sine rule on B D E \triangle BDE :

sin E D B E B = sin D E B B D Note that D E B = 18 0 2 0 θ = 16 0 θ sin θ 1 = sin ( 16 0 θ ) 2 cos 4 0 Note that sin ( 18 0 x ) = sin x 2 cos 4 0 sin θ = sin ( 2 0 + θ ) = sin 2 0 cos θ + cos 2 0 sin θ sin θ cos θ = sin 2 0 2 cos 4 0 cos 2 0 tan θ = sin ( 3 0 1 0 ) 2 cos ( 3 0 + 1 0 ) cos ( 3 0 1 0 ) = sin 3 0 cos 1 0 cos 3 0 sin 1 0 cos 3 0 cos 1 0 3 sin 3 0 sin 1 0 = 1 2 cos 1 0 3 2 sin 1 0 3 2 cos 1 0 3 2 sin 1 0 = 1 3 θ = 3 0 \begin{aligned} \frac {\sin \angle EDB}{EB} & = \frac {\sin \color{#3D99F6} \angle DEB}{BD} & \small \color{#3D99F6} \text{Note that }\angle DEB = 180^\circ - 20^\circ - \theta = 160^\circ - \theta \\ \frac {\sin \theta}{1} & = \frac {\color{#3D99F6} \sin (160^\circ - \theta)}{2\cos 40^\circ} & \small \color{#3D99F6} \text{Note that }\sin (180^\circ - x) = \sin x \\ 2\cos 40^\circ \sin \theta & = \color{#3D99F6} \sin (20^\circ + \theta) \\ & = \sin 20^\circ \cos \theta + \cos 20^\circ \sin \theta \\ \frac {\sin \theta}{\cos \theta} & = \frac {\sin 20^\circ}{2\cos 40^\circ - \cos 20^\circ} \\ \tan \theta & = \frac {\sin (30^\circ - 10^\circ)}{2\cos (30^\circ + 10^\circ) - \cos (30^\circ - 10^\circ)} \\ & = \frac {\sin 30^\circ \cos 10^\circ - \cos 30^\circ \sin 10^\circ }{\cos 30^\circ \cos 10^\circ - 3 \sin 30^\circ \sin 10^\circ} \\ & = \frac {\frac 12 \cos 10^\circ - \frac {\sqrt 3}2 \sin 10^\circ }{\frac {\sqrt 3}2 \cos 10^\circ - \frac 32 \sin 10^\circ} \\ & = \frac 1{\sqrt 3} \\ \implies \theta & = \boxed{30^\circ} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...