Find the average value of the function: f ( x ) = arcsin x ln x
Round your answer to the first three decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Here's another solution that avoids some of the difficulty at x = 0 by choosing a different integration constant.
Assume
f
(
x
)
is supposed to be a real-valued function with the biggest possible domain, i.e.
f
:
(
0
;
1
]
β
R
. Then we want to calculate
ΞΌ
:
=
1
β
0
1
β
β«
0
1
β
f
(
x
)
d
x
=
β«
0
1
β
f
(
x
)
d
x
,
f
(
x
)
=
arcsin
(
x
)
ln
(
x
)
=
arcsin
β
1
(
x
)
ln
(
x
)
β
We need to make sure the integral converges at the lower border
x
β
0
+
. We use l'Hopital's rule twice to notice
f
is continuous from above at
x
=
0
:
x
β
0
+
lim
β
f
(
x
)
lβH
=
β
x
β
0
+
lim
β
β
arcsin
2
(
x
)
1
β
x
2
β
β
x
1
β
lβH
=
β
x
β
0
+
lim
β
β
arcsin
(
x
)
β
1
β
x
2
β
1
β
x
2
β
β
β
=
0
Now we know the integral converges, we want to simplify it with integration by parts. We will need an anti-derivative of
arcsin
(
x
)
:
β«
arcsin
(
x
)
d
x
β
=
x
arcsin
(
x
)
+
1
β
x
2
β
+
C
β
β£
Choose
C
=
β
1
β
β
β
β
β
(
β
)
β
We choose the integration constant
C
=
β
1
to avoid further convergence trouble at
x
=
0
. Using integration by parts, we get
ΞΌ
β
=
(
x
arcsin
(
x
)
+
1
β
x
2
β
β
1
)
ln
(
x
)
β£
β£
β£
β
0
1
β
β
β«
0
1
β
(
x
arcsin
(
x
)
+
1
β
x
2
β
β
1
)
β
x
1
β
d
x
=
0
β
0
β
β«
0
1
β
arcsin
(
x
)
+
1
β
x
2
β
+
1
(
1
β
x
2
)
β
1
β
β
x
1
β
d
x
(
β
)
=
β
β
2
Ο
β
+
1
+
β«
0
1
β
1
+
1
β
x
2
β
x
d
x
β
β
To evaluate the lower border, we use l'Hospitals Rule on
x
ln
(
x
)
:
x
β
0
+
lim
β
(
x
arcsin
(
x
)
+
1
β
x
2
β
β
1
)
ln
(
x
)
=
x
β
0
+
lim
β
(
arcsin
(
x
)
β
1
β
x
2
β
+
1
x
β
)
β
x
ln
(
x
)
lβH
=
β
x
β
0
+
lim
β
(
arcsin
(
x
)
β
1
β
x
2
β
+
1
x
β
)
β
(
β
x
)
=
0
We solve the remaining integral by substitution
x
=
sin
(
t
)
,
d
x
=
cos
(
t
)
d
t
:
β
β
β«
0
1
β
1
+
1
β
x
2
β
x
d
x
β
β
=
β«
0
2
Ο
β
β
1
+
cos
(
t
)
sin
(
t
)
cos
(
t
)
d
t
β
=
β«
0
2
Ο
β
β
sin
(
t
)
β
1
+
cos
(
t
)
sin
(
t
)
β
d
t
=
[
β
cos
(
t
)
+
ln
β£
1
+
cos
(
t
)
β£
]
0
2
Ο
β
β
=
1
β
ln
(
2
)
β
Putting all together, we find
ΞΌ
=
β
2
Ο
β
+
2
β
ln
(
2
)
β
β
0
.
2
6
4
β
Problem Loading...
Note Loading...
Set Loading...
The function is only defined for x β ( 0 , 1 ] . When x = 0 the function is undefined but we can evaluate the limit from the right (since negative values are undefined) to check if it has one and stablish if the shape of the curve. After two iterations of L'Hopital's Rule we find the limit is 0 . We know that f ( 1 ) = 0 so the function starts and ends at 0 in the interval x β ( 0 , 1 ] . To find the average value of the curve we need to integrate the function and divide by the length of the interval in the x-axis, since this will give us the height of the rectangle whose area is equal to the area of the curve: f ( x ) β = 1 β 0 1 β β« 0 1 β arcsin x ln x d x = β« 0 1 β arcsin x ln x d x First we use integration by parts, differentiating the log and integrating arcsin x . So first we solve the latter: β« arcsin x d x Another integration by parts, integrating 1 and differentiating the inverse sine: β« arcsin x d x = x arcsin x β β« 1 β x 2 β x β d x Let u = 1 β x 2 d u = β 2 x d x βΉ β« 1 β x 2 β x β d x = β 2 1 β β« u β 1 β d u = x arcsin x + 2 1 β ( 2 u β ) = x arcsin x + 1 β x 2 β Plug this into the previous integration by parts: β« arcsin x ln x d x = ln x ( x arcsin x + 1 β x 2 β ) β β« x x arcsin x + 1 β x 2 β β d x = ln x ( x arcsin x + 1 β x 2 β ) β β« arcsin x d x β β« x 1 β x 2 β β d x = ( ln x β 1 ) ( x arcsin x + 1 β x 2 β ) β β« x 1 β x 2 β β d x Let x = cos ΞΈ d x = β sin ΞΈ d ΞΈ βΉ β« x 1 β x 2 β β d x = β β« cos ΞΈ sin ΞΈ β β sin ΞΈ d ΞΈ = β β« cos ΞΈ sin 2 ΞΈ β d ΞΈ = β β« cos ΞΈ 1 β cos 2 ΞΈ β d ΞΈ = β β« sec ΞΈ d ΞΈ + β« cos ΞΈ d ΞΈ = β ln β£ sec ΞΈ + tan ΞΈ β£ + sin ΞΈ = β ln β£ β£ β£ β£ β£ β x 1 β + x 1 β x 2 β β β£ β£ β£ β£ β£ β + 1 β x 2 β βΉ β« 0 1 β arcsin x ln x d x = β£ β£ β£ β£ β£ β ( ln x β 1 ) ( x arcsin x + 1 β x 2 β ) β ( β ln β£ β£ β£ β£ β£ β x 1 β + x 1 β x 2 β β β£ β£ β£ β£ β£ β + 1 β x 2 β ) β£ β£ β£ β£ β£ β 0 1 β Now, we evaluate the integral. When x = 1 , F ( x ) = β 2 Ο β , but when x = 0 F ( x ) is undefined, so we take the limit from the right (since negative values are also undefined). To make the limit easier we can rewrite F ( x ) as follows: F ( x ) = ln ( 1 β x 2 β + 1 ) + ln ( x x arcsin x ) + ln ( x 1 β x 2 β β 1 ) β 2 1 β x 2 β β x arcsin x x β 0 + lim β [ ln ( 1 β x 2 β + 1 ) + ln ( x x arcsin x ) + ln ( x 1 β x 2 β β 1 ) β 2 1 β x 2 β β x arcsin x ] = x β 0 + lim β [ ln 2 + ln ( x x arcsin x ) + ln ( x 1 β x 2 β β 1 ) β 2 β 0 ] = ln 2 β 2 + ln ( x β 0 + lim β x x arcsin x ) + ln ( x β 0 + lim β x 1 β x 2 β β 1 ) = ln 2 β 2 + ln ( e lim x β 0 + β ( ln x ) ( x arcsin x ) ) + ln ( e lim x β 0 + β ( ln x ) ( 1 β x 2 β β 1 ) ) AfterΒ someΒ LβHopitalβsΒ RuleΒ shenanigans: = ln 2 β 2 + 0 + 0 = ln 2 β 2 β΄ β£ β£ β£ β£ β£ β ( ln x β 1 ) ( x arcsin x + 1 β x 2 β ) β ( β ln β£ β£ β£ β£ β£ β x 1 β + x 1 β x 2 β β β£ β£ β£ β£ β£ β + 1 β x 2 β ) β£ β£ β£ β£ β£ β 0 1 β = β 2 Ο β β ( ln 2 β 2 ) βΉ f ( x ) β = 2 β 2 Ο β β ln 2 β β 0 . 2 6 4 β