Angles of triangle in AP

Geometry Level 4

If the angles A , B , C A,B,C of the triangle A B C ABC are in an arithmetic progression . and a , b , c a,b,c represent the length of sides opposite to angles A , B A, B and C C respectively, then the value of

a + c ( a 2 a c + c 2 ) \dfrac { a+c }{ \sqrt { { (a }^{ 2 }-ac+{ c }^{ 2 }) } } is

2 s i n A + C 2 2sin\frac { A+C }{ 2 } 2 c o s A C 2 2cos\frac { A-C }{ 2 } 2 s i n A C 2 2sin\frac { A-C }{ 2 } 2 c o s A + C 2 2cos\frac { A+C }{ 2 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sahil Bansal
Jan 6, 2016

S i n c e A , B , C a r e i n A P , 2 B = A + C a n d s i n c e s u m o f a n g l e s o f a t r i a n g l e i s π . A + B + C = π 3 B = π B = π / 3 N o w , u s i n g t h e c o s i n e f o r m u l a : c o s B = ( a 2 + c 2 b 2 ) / 2 a c 1 / 2 = ( a 2 + c 2 b 2 ) / 2 a c a 2 + c 2 b 2 = a c a 2 + c 2 a c = b 2 R e q u i r e d v a l u e = a + c b 2 = a + c b N o w a = 2 R s i n A , b = 2 R s i n B , c = 2 R s i n C w h e r e R i s t h e c i r c u m r a d i u s . a + c b = 2 R ( s i n A + s i n C ) 2 R s i n ( π / 3 ) = 2 s i n A + C 2 c o s A C 2 s i n ( π / 3 ) = 2 s i n ( π / 3 ) c o s A C 2 s i n ( π / 3 ) ( A + C = 2 B a n d B = π / 3 ) = 2 c o s A C 2 . Since\quad A,B,C\quad are\quad in\quad AP,\quad \\ \\ \Rightarrow \quad 2B\quad =\quad A+C\\ \\ and\quad since\quad sum\quad of\quad angles\quad of\quad a\quad triangle\quad is\quad \pi .\\ \\ \Rightarrow \quad A+B+C=\pi \\ \\ \Rightarrow \quad 3B=\pi \quad \\ \\ \Rightarrow \quad B=\pi /3\\ \\ Now,\quad using\quad the\quad cosine\quad formula\quad :\\ \\ cosB\quad =\quad { (a }^{ 2 }+{ c }^{ 2 }-{ b }^{ 2 })/2ac\\ \\ \Rightarrow \quad 1/2\quad =\quad { (a }^{ 2 }+{ c }^{ 2 }-{ b }^{ 2 })/2ac\\ \\ \Rightarrow \quad { a }^{ 2 }+{ c }^{ 2 }-{ b }^{ 2 }=ac\\ \\ \Rightarrow \quad { a }^{ 2 }+{ c }^{ 2 }-ac={ b }^{ 2 }\\ \\ \therefore \quad Required\quad value\quad =\quad \frac { a+c }{ \sqrt { { b }^{ 2 } } } =\frac { a+c }{ b } \\ \\ Now\quad a=2RsinA,b=2RsinB,c=2RsinC\\ \\ where\quad R\quad is\quad the\quad circumradius.\\ \\ \Rightarrow \frac { a+c }{ b } =\quad \frac { 2R(sinA+sinC) }{ 2Rsin(\pi /3) } =\frac { 2sin\frac { A+C }{ 2 } cos\frac { A-C }{ 2 } }{ sin(\pi /3) } \\ \\ \\ =\frac { 2sin(\pi /3)cos\frac { A-C }{ 2 } }{ sin(\pi /3) } \quad \quad (\because \quad A+C=2B\quad and\quad B=\pi /3)\\ \\ \\ =\quad 2cos\frac { A-C }{ 2 } .\\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...