If the angles of the triangle are in an arithmetic progression . and represent the length of sides opposite to angles and respectively, then the value of
is
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
S i n c e A , B , C a r e i n A P , ⇒ 2 B = A + C a n d s i n c e s u m o f a n g l e s o f a t r i a n g l e i s π . ⇒ A + B + C = π ⇒ 3 B = π ⇒ B = π / 3 N o w , u s i n g t h e c o s i n e f o r m u l a : c o s B = ( a 2 + c 2 − b 2 ) / 2 a c ⇒ 1 / 2 = ( a 2 + c 2 − b 2 ) / 2 a c ⇒ a 2 + c 2 − b 2 = a c ⇒ a 2 + c 2 − a c = b 2 ∴ R e q u i r e d v a l u e = b 2 a + c = b a + c N o w a = 2 R s i n A , b = 2 R s i n B , c = 2 R s i n C w h e r e R i s t h e c i r c u m r a d i u s . ⇒ b a + c = 2 R s i n ( π / 3 ) 2 R ( s i n A + s i n C ) = s i n ( π / 3 ) 2 s i n 2 A + C c o s 2 A − C = s i n ( π / 3 ) 2 s i n ( π / 3 ) c o s 2 A − C ( ∵ A + C = 2 B a n d B = π / 3 ) = 2 c o s 2 A − C .