Annoying Fractions

Algebra Level 5

If a 2 b + c + b 2 a + c + c 2 a + b = 0 \frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0

Then what is the sum of all the possible value(s) of a b + c + b a + c + c a + b ? \frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}?


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

X X
Jun 16, 2018

If a 2 b + c + b 2 a + c + c 2 a + b = 0 \frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0 Then a 2 b + c + a + b 2 a + c + b + c 2 a + b + c = a + b + c \frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c=a+b+c a ( a + b + c ) b + c + b ( a + b + c ) a + c + c ( a + b + c ) a + b = a + b + c \frac{a(a+b+c)}{b+c}+\frac{b(a+b+c)}{a+c}+\frac{c(a+b+c)}{a+b}=a+b+c ( a + b + c ) ( a b + c + b a + c + c a + b ) = a + b + c (a+b+c)(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b})=a+b+c So a + b + c = 0 or a b + c + b a + c + c a + b = 1 a+b+c=0\text{ or }\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1 If a + b + c = 0 a+b+c=0 ,then a b + c + b a + c + c a + b = 3 \frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=-3 Hence, ( 3 ) + 1 = 2 (-3)+1=-2

Last equation ,why it becomes -3?

Vincent Cagampang - 2 years, 11 months ago

Log in to reply

Because b+c=-a,a+c=-b,a+b=-c,so it's -1-1-1=-3

X X - 2 years, 11 months ago

A replica of my solution.♒

Ritabrata Roy - 2 years, 11 months ago
Dong kwan Yoo
Jun 15, 2018

By given condition, c y c a 2 ( a + c ) ( a + b ) = 0 \sum_{ cyc } a^2(a+c)(a+b) = 0

Therefore ( a + b + c ) ( a 3 + b 3 + c 3 + a b c ) = 0 (a+b+c)( a^3 + b^3 + c^3 + abc ) = 0

i) a + b + c = 0 a+b+c=0

c y c a b + c = 3 \sum_{ cyc } \frac{a}{b+c} = - 3

ii) a 3 + b 3 + c 3 + a b c = 0 a^3 + b^3 + c^3 + abc = 0

c y c a b + c = c y c a ( a + c ) ( a + b ) ( a + b ) ( b + c ) ( c + a ) \sum_{ cyc } \frac{a}{b+c} = \frac{ \sum_{ cyc } a(a+c)(a+b) } { (a+b)(b+c)(c+a) }

= c y c ( a 3 + a 2 ( b + c ) + a b c ) ( a + b ) ( b + c ) ( c + a ) \frac{ \sum_{ cyc } ( a^3 + a^2 (b+c) +abc ) } { (a+b)(b+c)(c+a) }

= a b c + a 2 ( b + c ) + b 2 ( c + a ) + c 2 ( a + b ) + 3 a b c ( a + b ) ( b + c ) ( c + a ) \frac{ -abc + a^2 (b+c) + b^2 (c+a) + c^2 (a+b) + 3abc } { (a+b)(b+c)(c+a) }

= ( a + b ) ( b + c ) ( c + a ) ( a + b ) ( b + c ) ( c + a ) = 1 \frac{ (a+b)(b+c)(c+a) } { (a+b)(b+c)(c+a) } = 1

By i) & ii) , Sol) = 2 -2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...