If b + c a 2 + a + c b 2 + a + b c 2 = 0
Then what is the sum of all the possible value(s) of b + c a + a + c b + a + b c ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Last equation ,why it becomes -3?
A replica of my solution.♒
By given condition, ∑ c y c a 2 ( a + c ) ( a + b ) = 0
Therefore ( a + b + c ) ( a 3 + b 3 + c 3 + a b c ) = 0
i) a + b + c = 0
∑ c y c b + c a = − 3
ii) a 3 + b 3 + c 3 + a b c = 0
∑ c y c b + c a = ( a + b ) ( b + c ) ( c + a ) ∑ c y c a ( a + c ) ( a + b )
= ( a + b ) ( b + c ) ( c + a ) ∑ c y c ( a 3 + a 2 ( b + c ) + a b c )
= ( a + b ) ( b + c ) ( c + a ) − a b c + a 2 ( b + c ) + b 2 ( c + a ) + c 2 ( a + b ) + 3 a b c
= ( a + b ) ( b + c ) ( c + a ) ( a + b ) ( b + c ) ( c + a ) = 1
By i) & ii) , Sol) = − 2
Problem Loading...
Note Loading...
Set Loading...
If b + c a 2 + a + c b 2 + a + b c 2 = 0 Then b + c a 2 + a + a + c b 2 + b + a + b c 2 + c = a + b + c b + c a ( a + b + c ) + a + c b ( a + b + c ) + a + b c ( a + b + c ) = a + b + c ( a + b + c ) ( b + c a + a + c b + a + b c ) = a + b + c So a + b + c = 0 or b + c a + a + c b + a + b c = 1 If a + b + c = 0 ,then b + c a + a + c b + a + b c = − 3 Hence, ( − 3 ) + 1 = − 2