Annoying Imaginary Friends

Algebra Level 3

i 0 ! + i 1 ! + i 2 ! + + i 100 ! = ? \large { i }^{ 0! }+{ i }^{ 1! }+{ i }^{ 2! }+\cdots +{ i }^{ 100! }= \, ?

Clarifications :

  • i = 1 i = \sqrt{-1} .

  • ! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .

0 0 1 1 1 -1 2 i 2i None of these choices

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Alex G
Apr 3, 2016

Using Eulers formula:

i = e i π 2 i = e^{i\frac{\pi}{2}}

Substituting this for i:

( e i π 2 ) 0 ! {(e^{i\frac{\pi}{2}})} ^ {0!} + ( e i π 2 ) 1 ! {(e^{i\frac{\pi}{2}})} ^ {1!} + ( e i π 2 ) 2 ! {(e^{i\frac{\pi}{2}})} ^ {2!} + ( e i π 2 ) 4 ! {(e^{i\frac{\pi}{2}})} ^ {4!} + ... + ( e i π 2 ) 100 ! {(e^{i\frac{\pi}{2}})} ^ {100!}

e i π 2 e^{i\frac{\pi}{2}} + e i π 2 e^{i\frac{\pi}{2}} + e i π {e^{i\pi}} + ( e i π ) 3 {({e}^{i\pi})} ^ {3} + ( ( e i π ) 3 ) 4 {({({e}^{i\pi})} ^ {3})} ^ {4} + ....

e i π 2 e^{i\frac{\pi}{2}} + e i π 2 e^{i\frac{\pi}{2}} + e i π {e^{i\pi}} + e 3 i π {e}^{3i\pi} + e 12 i π {e}^{12i\pi} + .... + e ( 99 ! 50 ) i π {e}^{(99!*50)i\pi}

Note that e i θ e^{i\theta} is cyclical, repeating with multiples of 2 π 2\pi . If θ \theta is an even multiple of π \pi , than e i θ = e 0 = 1 e^{i\theta} = e^{0} =1 . Using this fact, the sum becomes

i + i 1 1 + 1 + 1 + . . . + 1 = 95 + 2 i i + i - 1 - 1 + 1 + 1 + ... +1 = 95 + 2i

Or you can use the fact that i 4 { i }^{ 4 } =1 and no need for Euler !

Mohammad Hamdar - 5 years, 2 months ago

Log in to reply

Ya you can. I change complex numbers into polar form out of habit.

Alex G - 5 years, 2 months ago
Arulx Z
Apr 7, 2016

i n = 1 i^n = 1 if n 0 ( m o d 4 ) n \equiv 0 \quad \left(\bmod \text{ 4} \right) . Additionally, if x 4 x \geq 4 then 4 x ! 4 | x! . The summation can be rewritten as

= i 0 ! + i 1 ! + i 2 ! + i 3 ! + 1 97 = i + i 1 1 + 97 = 95 + 2 i = i^{0!} + i^{1!} + i^{2!} + i^{3!} + 1 \cdot 97 \\ = i + i -1 -1 + 97 \\ = 95 + 2i

Precisely as I did it

Luis Paulo - 5 years, 2 months ago
Blake Hurlburt
Apr 4, 2016

Using i^{4k} = i^4 = 1 where k is a positive integer, you can break the sum into i^{0!}+i^{1!}+i^{2!}+i^{3!}+(100-3) = i+i+(-1)+(-1)+97 = 95 + 2i.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...