Annoying Reciprocals

Calculus Level 4

If x x is a complex number satisfying x 2 + x + 1 = 0 { x }^{ 2 }+x+1=0 , then for all positive integers n n : k = 1 n ( x k + 1 x k ) 2 = n + a n b \sum _{k=1}^n \left(x^k+\frac 1{x^k} \right)^2 =n+a \left \lfloor \frac nb \right \rfloor

where a a and b b are positive integers. Find a + b a+b .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The complex roots of x 2 + x + 1 = 0 x^2+x+1 = 0 are the third root of unity ω \omega . ω 2 + ω + 1 = 0 \implies \omega^2 + \omega + 1 = 0 and ω 3 = 1 \omega^3 = 1 . Therefore,

S = k = 1 n ( x k + 1 x k ) 2 = k = 1 n ( ω k + 1 ω k ) 2 = k = 1 n ( ω k + ω 3 k ω k ) 2 = k = 1 n ( ω k + ω 2 k ) 2 = k = 1 n ( ω 2 k + 2 ω 3 k + ω 4 k ) = k = 1 n ( ω 2 k + ω k + 2 ) \begin{aligned} S & = \sum_{k=1}^n \left(x^k + \frac 1{x^k} \right)^2 = \sum_{k=1}^n \left(\omega^k + \frac {\color{#3D99F6}1}{\omega^k} \right)^2 = \sum_{k=1}^n \left(\omega^k + \frac {\color{#3D99F6}\omega^{3k}}{\omega^k} \right)^2 = \sum_{k=1}^n \left(\omega^k + \omega^{2k} \right)^2 \\ & = \sum_{k=1}^n \left(\omega^{2k} + {\color{#3D99F6}2\omega^{3k}}+ {\color{#D61F06}\omega^{4k}} \right) = \sum_{k=1}^n \left(\omega^{2k} + {\color{#D61F06}\omega^k} + {\color{#3D99F6}2} \right) \end{aligned}

= ω 2 + ω 4 + ω 6 + ω 8 + ω 10 + ω 12 + + ω 2 n + ω + ω 2 + ω 3 + ω 4 + ω 5 + ω 6 + + ω n + 2 + 2 + 2 + 2 + 2 + 2 + + 2 = ω 2 + ω + 1 + ω 2 + ω + 1 + + ω 2 n + ω + ω 2 + 1 + ω + ω 2 + 1 + + ω n Note that ω + ω 2 = 1 + 2 + 2 + 2 + 2 + 2 + 2 + + 2 = 1 1 + 2 1 1 + 2 + + ω 2 n + ω n + 2 + 2 + 2 + 2 + 2 + 2 + + 2 = 1 + 1 + 4 + 1 + 1 + 4 + + ω 2 n + ω n + 2 \begin{array} {llccccccl} & = & \omega^2 & + \omega^4 & + \omega^6 & + \omega^8 & + \omega^{10} & + \omega^{12} & + \cdots & + \omega^{2n} \\ & & + \omega & + \omega^2 & + \omega^3 & + \omega^4 & + \omega^5 & + \omega^6 & + \cdots & + \omega^n \\ & & + 2 & + 2 & + 2 & + 2 & + 2 & + 2 & + \cdots & + 2 \\ & = & \omega^2 & + \omega & + 1 & + \omega^2 & + \omega & + 1 & + \cdots & + \omega^{2n} \\ & & + \omega & + \omega^2 & + 1 & + \omega & + \omega^2 & + 1 & + \cdots & + \omega^n & \small \color{#3D99F6} \text{Note that }\omega+\omega^2 = -1 \\ & & + 2 & + 2 & + 2 & + 2 & + 2 & + 2 & + \cdots & + 2 \\ & = & \color{#3D99F6}-1 & \color{#3D99F6}-1 & + 2 & \color{#3D99F6}-1 & \color{#3D99F6}-1 & + 2 & + \cdots & + \omega^{2n}+\omega^n \\ & & + 2 & + 2 & + 2 & + 2 & + 2 & + 2 & + \cdots & + 2 \\ & = & 1 & +1 & + 4 & + 1 & + 1 & + 4 & + \cdots & + \omega^{2n} + \omega^n + 2 \end{array}

\(\begin{array} {} & = n + 3 \left \lfloor \dfrac n3 \right \rfloor \end{array}\)

a + b = 3 + 3 = 6 \implies a+b = 3+3 = \boxed{6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...