Another AIME problem

Algebra Level 3

{ x y z = 1 x + 1 z = 5 y + 1 x = 29 \begin{cases} xyz=1 \\ x+ \dfrac{1}{z}= 5 \\ y+\dfrac{1}{x} = 29 \end{cases}

Suppose that x x , y y and z z are three positive numbers that satisfy the system of equations above. Then z + 1 y = m n z+ \dfrac{1}{y}= \dfrac{m}{n} , where m m and n n are relatively prime positive integers. Find m + n m+n .

20 25 10 5 15

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Using the given system we have that

( x + 1 z ) ( y + 1 x ) ( z + 1 y ) = 5 × 29 × ( z + 1 y ) = 145 ( z + 1 y ) \left(x + \dfrac{1}{z}\right)\left(y + \dfrac{1}{x}\right)\left(z + \dfrac{1}{y}\right) = 5 \times 29 \times \left(z + \dfrac{1}{y}\right) = 145\left(z + \dfrac{1}{y}\right) .

Expanding and rearranging, we then find that

x y z + x + y + z + 1 x + 1 y + 1 z + 1 x y z = 145 ( z + 1 y ) xyz + x + y + z + \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} + \dfrac{1}{xyz} = 145\left(z + \dfrac{1}{y}\right) \Longrightarrow

x y z + 1 x y z + ( x + 1 z ) + ( y + 1 x ) + ( z + 1 y ) = 145 ( z + 1 y ) xyz + \dfrac{1}{xyz} + \left(x + \dfrac{1}{z}\right) + \left(y + \dfrac{1}{x}\right) + \left(z + \dfrac{1}{y}\right) = 145\left(z + \dfrac{1}{y}\right) \Longrightarrow

1 + 1 + 5 + 29 = ( 145 1 ) ( z + 1 y ) 36 = 144 ( z + 1 y ) 1 + 1 + 5 + 29 = (145 - 1)\left(z + \dfrac{1}{y}\right) \Longrightarrow 36 = 144\left(z + \dfrac{1}{y}\right) \Longrightarrow

z + 1 y = 36 144 = 1 4 a + b = 1 + 4 = 5 z + \dfrac{1}{y} = \dfrac{36}{144} = \dfrac{1}{4} \Longrightarrow a + b = 1 + 4 = \boxed{5} .

Comment: Not that it is required, but it can be determined that ( x , y , z ) = ( 1 5 , 24 , 5 24 ) (x,y,z) = \left(\dfrac{1}{5}, 24, \dfrac{5}{24}\right) .

Thank you.

Hana Wehbi - 3 years, 11 months ago
Chew-Seong Cheong
Jun 25, 2017

{ x y z = 1 . . . ( 1 ) x + 1 x = 5 . . . ( 2 ) y + 1 x = 29 . . . ( 3 ) \begin{cases} xyz = 1 &...(1) \\ x + \dfrac 1x = 5 &...(2) \\ y + \dfrac 1x = 29 &...(3) \end{cases}

( 2 ) : x + 1 z = 5 Multiply both sides by y z x y z + y z z = 5 y z Note that ( 1 ) : x y z = 1 1 + y = 5 y z . . . ( 4 ) \begin{aligned} (2): \quad x + \frac 1z & = 5 & \small \color{#3D99F6} \text{Multiply both sides by }yz \\ {\color{#3D99F6}xyz} + \frac {yz}z & = 5yz & \small \color{#3D99F6} \text{Note that }(1): \ xyz = 1 \\ \implies {\color{#3D99F6}1} + y & = 5yz \ \ \ ...(4) \end{aligned}

( 2 ) : y + 1 x = 29 y + x y z x = 29 y + y z = 29 . . . ( 5 ) Multiply both sides by 5 5 y + 5 y z = 145 Note that ( 4 ) : 5 y z = 1 + y 5 y + 1 + y = 145 y = 24 . . . ( 6 ) \begin{aligned} (2): \quad y + \frac {\color{#3D99F6}1}x & = 29 \\ y + \frac {\color{#3D99F6}xyz}x & = 29 \\ y + yz & = 29 \ \ \ ...(5) & \small \color{#3D99F6} \text{Multiply both sides by }5 \\ 5y + {\color{#3D99F6}5yz} & = 145 & \small \color{#3D99F6} \text{Note that }(4): \ 5yz = 1+y \\ 5y + {\color{#3D99F6}1+y} & = 145 \\ \implies y & = 24 \ \ \ ...(6) \end{aligned}

( 5 ) : y + y z = 29 Divide both sides by y 1 + z = 29 y z + 1 y = 30 y 1 Note that ( 6 ) : y = 24 = 30 24 1 = 1 4 \begin{aligned} (5): \quad y + yz & = 29 & \small \color{#3D99F6} \text{Divide both sides by }y \\ 1 + z & = \frac {29}y \\ \implies z + \frac 1y & = \frac {30}{\color{#3D99F6}y} - 1 & \small \color{#3D99F6} \text{Note that }(6): \ y = 24 \\ & = \frac {30}{\color{#3D99F6}24} - 1 \\ & = \frac 14 \end{aligned}

m + n = 1 + 4 = 5 \implies m + n = 1 + 4 = \boxed{5}

Thank you.

Hana Wehbi - 3 years, 11 months ago
Rab Gani
Jun 26, 2017

from the second eqs. z = 1/(5 – x),
from the third eqs. 1/y =x/(29x – 1), or y = (29x – 1)/x from the first eqs. xyz =(29x – 1)/(5 – x) = 1, x= 1/5, y=24,z=5/24 So z + 1/y = m/n = ¼ , m+n = 5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...