Gamma Integral

Calculus Level pending

0 π 2 1 8 cos 4 ( x ) + 7 sin 4 ( x ) d x \int_0^{\frac{π}{2}} \frac{1}{\sqrt{8\cos^4 (x) +7\sin^4 (x)}} dx

This above expression can be written as Γ 2 ( 1 a ) 4 π c 56 b \frac{Γ^2{(\frac{1}{a})}}{4\sqrt[b]{π^c 56}}

Where a , b , c a , b ,c are positive integers .

Find the value of ( a b ) c (a-b)c

Γ ( . ) Γ(.) is Gamma-function

Gamma function


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Dwaipayan Shikari
Nov 30, 2020

0 π / 2 1 8 cos 4 x + 7 sin 4 x d x \int_0^{π/2} \frac{1}{\sqrt{8\cos^4 x +7\sin^4 x}} dx

0 π / 2 s e c 2 x 8 + 7 t a n 4 x d x \int_0^{π/2} \frac{sec^2 x }{\sqrt{8 + 7tan^4 x }} dx

t = t a n x t= tanx

0 d t 8 + 7 t 4 \int_0^∞ \frac{dt}{\sqrt{8+7 t^4}}
8 + 7 t 4 = u 2 , 2.7. t 3 = u d u d t 8+7 t^4 = u^2 , 2.7.t^3= u \frac{du}{dt} Integral becomes 1 2 7 4 0 d u ( u 2 8 ) 3 4 \frac{1}{2\sqrt[4]{7}} \int_0^∞ \frac{du}{(u^2 -8 )^{\frac{3}{4}}}

u 2 8 = p , 2 u = d p d u u^2 -8 = p , 2u=\frac{dp}{du} 1 4 8 2 7 4 0 d p ( 1 + p 8 ) ( p 3 2 ) \frac{1}{4\sqrt[4]{8^2 7}} \int_0^∞ \frac{dp}{\sqrt{(1+\frac{p}{8} ) (p^{\frac{3}{2}})}} p 8 = u ¨ \frac{p}{8} =ü Integral becomes 1 4 56 4 0 u ¨ 3 / 4 d u ¨ ( ( 1 + u ¨ ) ) \frac{1}{4\sqrt[4]{56}} \int_0^∞ \frac{ ü^{-3/4} dü}{(\sqrt{(1+ü)})}

Take u ¨ 1 + u ¨ = μ \frac{ü}{1+ü} = μ After simplifying the integral becomes 1 4 56 4 0 1 ( 1 μ ) 3 / 4 μ 3 / 4 d μ \frac{1}{4\sqrt[4]{56}} \int_0^1 (1-μ)^{-3/4} μ^{-3/4} dμ

Which is in a closed form of 1 4 56 4 β ( 1 4 , 1 4 ) \frac{1}{4\sqrt[4]{56}} β(\frac{1}{4} , \frac{1}{4} )

Which can also be written as 1 4 56 4 Γ 2 ( 1 4 ) Γ ( 1 2 ) \frac{1}{4\sqrt[4]{56}} \frac{Γ^2 (\frac{1}{4})}{Γ(\frac{1}{2})}

Or other form 1 4 π 2 56 4 Γ 2 ( 1 4 ) \frac{1}{4\sqrt[4]{π^2 56}} Γ^2 (\frac{1}{4}) as Γ ( 1 / 2 ) = π Γ(1/2) = √π

As per question a = 4 , b = 4 , c = 2 a = 4 , b= 4 , c=2

Final answer ( a b ) c = 0 🍎 🍏 \boxed{(a-b)c =0}🍎🍏

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...