Another Case study

a n = n n \large a_n= \left \lfloor \dfrac n{\lfloor \sqrt n\rfloor} \right \rfloor

For each natural number n n , define a n a_n as above. Find the number of n 2010 n \le 2010 for which a n > a n + 1 a_{n} > a_{n+1} .


Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 43.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Consider n n between two perfect squares k 2 k^2 and ( k + 1 ) 2 (k+1)^2 that is k 2 n ( k + 1 ) 2 k^2 \le n \le (k+1)^2 or k 2 n k 2 + 2 k + 1 k^2 \le n \le k^2+2k+1 . Then we have a k 2 = k 2 k 2 = k 2 k = k a_{k^2} = \left \lfloor \dfrac {k^2}{\lfloor \sqrt{k^2} \rfloor} \right \rfloor = \left \lfloor \dfrac {k^2}k \right \rfloor = k . Similarly, a ( k + 1 ) 2 = k + 1 a_{(k+1)^2} = k+1 . We note that:

a k 2 = k a k 2 + 1 = k 2 + 1 k 2 + 1 = k 2 + 1 k = k a k 2 + 2 = k 2 + 2 k = k = a k 2 + k 1 = k 2 + k 1 k = k a k 2 + k 1 = k 2 + k k = k + 1 a k 2 + k + 1 = k 2 + k + 1 k = k + 1 = a k 2 + 2 k 1 = k 2 + 2 k 1 k = k + 1 a k 2 + 2 k = k 2 + 2 k k = k + 2 a ( k + 1 ) 2 = k + 1 \begin{aligned} a_{k^2} & = k \\ a_{k^2+1} & = \left \lfloor \frac {k^2+1}{\lfloor \sqrt{k^2+1} \rfloor} \right \rfloor = \left \lfloor \frac {k^2+1}k \right \rfloor = k \\ a_{k^2+2} & = \left \lfloor \frac {k^2+2}k \right \rfloor = k \\ \cdots \ & = \ \cdots \\ a_{k^2+k-1} & = \left \lfloor \frac {k^2+k-1}k \right \rfloor = k \\ a_{k^2+k-1} & = \left \lfloor \frac {k^2+k}k \right \rfloor = \color{#3D99F6} k + 1 \\ a_{k^2+k+1} & = \left \lfloor \frac {k^2+k+1}k \right \rfloor = \color{#3D99F6} k + 1 \\ \cdots \ & = \ \cdots \\ a_{k^2+2k-1} & = \left \lfloor \frac {k^2+2k-1}k \right \rfloor = \color{#3D99F6} k + 1 \\ a_{k^2+2k} & = \left \lfloor \frac {k^2+2k}k \right \rfloor = \color{#D61F06} k + 2 \\ a_{(k+1)^2} & = \color{#3D99F6} k + 1 \end{aligned}

This implies that a n > a n + 1 a_n > a_{n+1} , whenever, n = k 2 1 n = k^2 - 1 , where k 2 k \ge 2 . Since 2010 = 44 \lfloor \sqrt {2010} \rfloor = 44 , there are 43 \boxed{43} acceptable k k 's.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...