Another Circle Problem! (fixed)

Geometry Level 4

The radius of the semicircle is R R and the radius of the two congruent circles is r r . The lower circle is the incircle of A O F \triangle AOF . The upper circle is tangent to the semicircle at G G and segment A C AC at F F . Find r R = a b \dfrac{r}{R} = \dfrac{a}{b} , where a a and b b are coprime integers, and submit a + b a+b .

inspiration


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

David Vreken
Feb 12, 2021

Let the radius of the semi-circle be R = 1 R = 1 .

From O G OG , F O = O G G F = 1 2 r FO = OG - GF = 1 - 2r .

By the Pythagorean Theorem on A F D \triangle AFD , A F = A O 2 F O 2 = 1 2 ( 1 2 r ) 2 = 2 r r 2 AF = \sqrt{AO^2 - FO^2} = \sqrt{1^2 - (1 - 2r)^2} = 2\sqrt{r - r^2} .

As an inradius of a right triangle, r = 1 2 ( A F + F O A O ) = 1 2 ( 2 r r 2 + 1 2 r 1 ) r = \frac{1}{2}(AF + FO - AO) = \frac{1}{2}(2\sqrt{r - r^2} + 1 - 2r - 1) , which solves to r = 1 5 r = \cfrac{1}{5} for r > 0 r > 0 .

Therefore, r R = 1 5 1 = 1 5 \cfrac{r}{R} = \cfrac{\frac{1}{5}}{1} = \cfrac{1}{5} , so a = 1 a = 1 , b = 5 b = 5 , and a + b = 6 a + b = \boxed{6} .

WLOG, we set r = 1 r=1 . Let E E , D D be the points of tangency of the lower circle with O A OA and O F OF respectively. Denote J O D \angle JOD by θ \theta .

O J OJ is the angle bisector of E O D \angle EOD , hence E O J = D O J = θ \angle EOJ=\angle DOJ=\theta Since A C AC is tangent to the upper circle, O H OH is perpendicular to A C AC , thus A F O \triangle AFO is a right angled triangle. Hence, O A F = 90 A O F = 90 2 θ \angle OAF=90{}^\circ -\angle AOF=90{}^\circ -2\theta Since A J AJ is the angle bisector of O A F \angle OAF ,
O A J = O A F 2 = 45 θ \angle OAJ= \dfrac{\angle OAF}{2}=45{}^\circ -\theta On right O D J \triangle ODJ ,
cot θ = O D J D = O F F D J D = ( R 2 ) 1 1 cot θ = R 3 ( 1 ) \cot \theta =\dfrac{OD}{JD}=\dfrac{OF-FD}{JD}=\dfrac{\left( R-2 \right)-1}{1}\Rightarrow \cot \theta =R-3 \ \ \ \ \ (1) Furthermore, O E = O D = R 3 OE=OD=R-3 and on right J A E \triangle JAE ,

cot ( 45 θ ) = A E J E = A E 1 A E = cot ( 45 θ ) = cot θ cot 45 + 1 cot θ cot 45 = cot θ + 1 cot θ 1 ( 1 ) A E = ( R 3 ) + 1 ( R 3 ) 1 A E = R 2 R 4 ( 2 ) \begin{aligned} & \cot \left( 45{}^\circ -\theta \right)=\dfrac{AE}{JE}=\dfrac{AE}{1} \\ & \Rightarrow AE=\cot \left( 45{}^\circ -\theta \right)=\dfrac{\cot \theta \cdot \cot 45{}^\circ +1}{\cot \theta -\cot 45{}^\circ }=\dfrac{\cot \theta +1}{\cot \theta -1} \\ & \overset{\left( 1 \right)}{\mathop{\Rightarrow }}\,AE=\dfrac{\left( R-3 \right)+1}{\left( R-3 \right)-1} \\ & \Rightarrow AE=\dfrac{R-2}{R-4} \ \ \ \ \ (2) \\ \end{aligned} Finally, A O = A E + E O ( 2 ) R = R 2 R 4 + R 3 R ( R 4 ) = R 2 + ( R 4 ) ( R 3 ) R 2 4 R = R 2 + R 2 7 R + 12 R = 5 \begin{aligned} AO=AE+EO & \overset{\left( 2 \right)}{\mathop{\Rightarrow }}\,R=\frac{R-2}{R-4}+R-3 \\ & \Leftrightarrow R\left( R-4 \right)=R-2+\left( R-4 \right)\left( R-3 \right) \\ & \Leftrightarrow \cancel{{{R}^{2}}}-4R=R-2+\cancel{{{R}^{2}}}-7R+12 \\ & \Leftrightarrow R=5 \\ \end{aligned}

This gives r R = 1 5 \frac{r}{R}=\frac{1}{5} For the answer, a = 1 a=1 , b = 5 b=5 , thus a + b = 6 a+b=\boxed{6} .

Chew-Seong Cheong
Feb 13, 2021

Let R = 1 R=1 , the radius of the two congruent circles be r r , J M JM , J N JN , and J P JP be perpendicular to A F AF , A O AO , and F O FO respectively, and F O A = θ \angle FOA = \theta . Since radius O G OG is perpendicular to chord A C AC , A F O = 9 0 \angle AFO = 90^\circ and F A O = 9 0 θ \angle FAO = 90^\circ - \theta . Considering the radius A O AO :

A N + N O = A O J N cot F A O 2 + J N cot F O A 2 = A O r cot ( 4 5 θ 2 ) + r cot θ 2 = 1 Let t = tan θ 2 ( 1 + t 1 t ) t + r t = 1 r = 1 1 + t 1 t + 1 t . . . ( 1 ) \begin{aligned} AN + NO & = AO \\ JN \cot \frac {\angle FAO} 2 + JN \cot \frac {\angle FOA}2 & = AO \\ r \cot \left(45^\circ - \frac \theta 2\right) + r \cot \frac \theta 2 & = 1 & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ \left(\frac {1+t}{1-t} \right) t + \frac rt & = 1 \\ \implies r & = \frac 1{\frac {1+t}{1-t} + \frac 1t} & ...(1) \end{aligned}

We note that F O = 1 2 r FO = 1 - 2r . Similarly,

F P + P O = F O r + r cot θ 2 = 1 2 r r = 1 3 + 1 t . . . ( 2 ) \begin{aligned} FP+PO & = FO \\ r + r \cot \frac \theta 2 & = 1 - 2r \\ \implies r & = \frac 1{3+\frac 1t} & ...(2) \end{aligned}

From ( 1 ) = ( 2 ) (1)=(2) :

1 1 + t 1 t + 1 t = 1 3 + 1 t 1 + t 1 t = 3 1 + t = 3 3 t t = 1 2 r R = r = 1 3 + 1 t = 1 5 \begin{aligned} \frac 1{\blue{\frac {1+t}{1-t}}+\frac 1t} & = \frac 1{\blue 3+\frac 1t} \\ \implies \frac {1+t}{1-t} & = 3 \\ 1+t = 3- 3t \\ \implies t & = \frac 12 \\ \implies \frac rR & = r = \frac 1{3+\frac 1t} = \frac 15 \end{aligned}

Therefore a + b = 1 + 5 = 6 a+b = 1 + 5 = \boxed 6 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...