What is the coefficient of x 7 in the expansion of ( 1 − x − x 2 + x 3 ) 6 ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice solution!Did by the same way. @Pranjal Jain
A little long but real[y a nice method that can be applied in general to such problems. Thanks.
( 1 − x − x 2 − x 3 ) 6
= ( 1 − x ) 6 ( 1 − x 2 ) 6
Availing binomial expansion, co-efficient of x 7
= ( 6 C 1 ) 2 − ( 6 C 2 ) ( 6 C 3 ) + ( 6 C 3 ) ( 6 C 1 )
= − 1 4 4
Can you please explain how you get your co-efficients ? It seems to be a good method. Thanks.
Add them to obtain -144.
Can you please explain how you get your numbers ? It seems to be a good method. Thanks.
on the expansion of the given expression, the coefficient of ax^7 would turn out to be 36, NOT -144
Log in to reply
Can you show us your process of expansion? It turns out that maybe I should go to WolframAlpha to confirm, but ain't nobody got time fo' dat, and why are you only saying this to me in particular?
There more than one term with X 7 .
E x p . = ( 1 − X 2 ) 6 ∗ ( 1 − X ) 6 e x p a n d i n g b y P a s c a l , t a k i n g o n l y t e r m s l e s s t h a n X 8 , f r o m t h e f i r s t b r a c k e t , a n d s i n c e t h e f i r s t b r a c k e t h a s t e r m s o n l y o f e v e n p o w e r o f X , t o o b t a i n X 7 , w e n e e d o n l y t e r m s o f o d d p o w e r o f X f r o m t h e s e c o n d b r a c k e t . . E x p . = ( . . − 2 0 X 6 + 1 5 X 4 − 6 X 2 + 1 ) ∗ ( . . − 6 X 5 + . . − 2 0 X 3 + . . − 6 X + . . ) S o , m u l t i p l y i n g t e r m s t h a t g i v e X 7 − 2 0 X 6 ∗ ( − 6 X ) + 1 5 X 4 ∗ ( − 2 0 ) X 3 − 6 X 2 ∗ ( − 6 X 5 ) = ( + 1 2 0 − 3 0 0 + 3 6 ) X 7 = − 1 4 4 ∗ X 7
( 1 − x − x 2 + x 3 ) 6 let ( 1 − x ) be a, ( x 3 − x 2 ) be b, by pascal, we get ( a + b ) 6 = a 6 + 6 a 5 b + 1 5 a 4 b 2 + 2 0 a 3 b 3 + 1 5 a 2 b 4 + 6 a b 5 + b 6 now change a&b ( 1 − x ) 6 + 6 ( 1 − x ) 5 ( x 3 − x 2 ) + 1 5 ( 1 − x ) 4 ( x 3 − x 2 ) 2 + 2 0 ( 1 − x ) 3 ( x 3 − x 2 ) 3 + 1 5 ( 1 − x ) 2 ( x 3 − x 2 ) 4 + 6 ( 1 − x ) 1 ( x 3 − x 2 ) 5 + ( x 3 − x 2 ) 6 use pascal again,notice that ( 1 − x ) 6 doesnt have a 7th power, so exclude it,again after 2 0 ( 1 − x ) 3 ( x 3 − x 2 ) 3 the powers are too big. 6 ( 1 − 5 x + 1 0 x 2 − 1 0 x 3 + 5 x 4 − x 5 ) ( x 3 − x 2 ) + 1 5 ( 1 − 4 x + 6 x 2 − 4 x 3 + x 4 ) ( x 6 − 2 x 5 + x 4 ) + 2 0 ( 1 − 3 x + 3 x 2 − x 3 ) ( x 9 − 3 x 8 + 3 x 7 − x 6 ) now multiply the powers to get the power( only those whose power add up to 7) 6 ( 6 x 7 ) + 1 5 ( − 4 x 7 − 1 2 x 7 − 4 x 7 ) + 2 0 ( 3 x 7 + 3 x 7 ) 3 6 − 3 0 0 + 1 2 0 we get − 1 4 4
This is quite a best and simple approach
Problem Loading...
Note Loading...
Set Loading...
( 1 − x − x 2 + x 3 ) 6 = ( 1 − x ) 6 ( 1 − x 2 ) 6 = ( 1 − x ) 1 2 ( 1 + x ) 6
Using binomial expansion, one may calculate coefficient of x 7 as − ( 7 1 2 ) ( 0 6 ) + ( 6 1 2 ) ( 1 6 ) − ( 5 1 2 ) ( 2 6 ) + ( 4 1 2 ) ( 3 6 ) − ( 3 1 2 ) ( 4 6 ) + ( 2 1 2 ) ( 5 6 ) − ( 1 1 2 ) ( 6 6 ) which equals − 1 4 4