Another Coefficients Problem

Algebra Level 3

What is the coefficient of x 7 x^7 in the expansion of ( 1 x x 2 + x 3 ) 6 ? \big(1 - x - x^2 + x^3\big)^6?

-144 132 144 -132

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Pranjal Jain
Nov 29, 2014

( 1 x x 2 + x 3 ) 6 = ( 1 x ) 6 ( 1 x 2 ) 6 = ( 1 x ) 12 ( 1 + x ) 6 (1-x-x^{2}+x^{3})^{6}=(1-x)^{6}(1-x^{2})^{6}=(1-x)^{12}(1+x)^{6}

Using binomial expansion, one may calculate coefficient of x 7 x^{7} as ( 12 7 ) ( 6 0 ) + ( 12 6 ) ( 6 1 ) ( 12 5 ) ( 6 2 ) + ( 12 4 ) ( 6 3 ) ( 12 3 ) ( 6 4 ) + ( 12 2 ) ( 6 5 ) ( 12 1 ) ( 6 6 ) -\binom{12}{7}\binom{6}{0}+\binom{12}{6}\binom{6}{1}-\binom{12}{5}\binom{6}{2}+\binom{12}{4}\binom{6}{3}-\binom{12}{3}\binom{6}{4}+\binom{12}{2}\binom{6}{5}-\binom{12}{1}\binom{6}{6} which equals 144 \boxed{-144}

Nice solution!Did by the same way. @Pranjal Jain

Anuj Shikarkhane - 6 years, 6 months ago

A little long but real[y a nice method that can be applied in general to such problems. Thanks.

Niranjan Khanderia - 6 years, 6 months ago

( 1 x x 2 x 3 ) 6 (1-x-x^{2}-x^{3})^{6}

= ( 1 x ) 6 ( 1 x 2 ) 6 =(1-x)^{6} (1-x^{2})^{6}

Availing binomial expansion, co-efficient of x 7 x^{7}

= ( 6 C 1 ) 2 ( 6 C 2 ) ( 6 C 3 ) + ( 6 C 3 ) ( 6 C 1 ) =(6C1)^{2}-(6C2)(6C3)+(6C3)(6C1)

= 144 = \boxed {-144}

Can you please explain how you get your co-efficients ? It seems to be a good method. Thanks.

Niranjan Khanderia - 6 years, 6 months ago
Kenny Lau
Nov 29, 2014
  • 7=3+3+1 which corresponds to -60
  • 7=3+2+2 which corresponds to +60
  • 7=3+2+1+1 which corresponds to -180
  • 7=3+1+1+1+1 which corresponds to +30
  • 7=2+2+2+1 which corresponds to +60
  • 7=2+2+1+1+1 which corresponds to -60
  • 7=2+1+1+1+1+1 which corresponds to 6

Add them to obtain -144.

Can you please explain how you get your numbers ? It seems to be a good method. Thanks.

Niranjan Khanderia - 6 years, 6 months ago

on the expansion of the given expression, the coefficient of ax^7 would turn out to be 36, NOT -144

Kunal Jain - 6 years, 6 months ago

Log in to reply

Can you show us your process of expansion? It turns out that maybe I should go to WolframAlpha to confirm, but ain't nobody got time fo' dat, and why are you only saying this to me in particular?

Kenny Lau - 6 years, 6 months ago

There more than one term with X 7 X^7 .

Niranjan Khanderia - 6 years, 6 months ago

E x p . = ( 1 X 2 ) 6 ( 1 X ) 6 e x p a n d i n g b y P a s c a l , t a k i n g o n l y t e r m s l e s s t h a n X 8 , f r o m t h e f i r s t b r a c k e t , a n d s i n c e t h e f i r s t b r a c k e t h a s t e r m s o n l y o f e v e n p o w e r o f X , t o o b t a i n X 7 , w e n e e d o n l y t e r m s o f o d d p o w e r o f X f r o m t h e s e c o n d b r a c k e t . . Exp. = (1 - X^2 )^6*(1-X)^6~expanding~ by~ Pascal, \\ taking~ only~terms ~less~than~X^8,~ from ~the~ first~ bracket,~ and\\since~ the~ first~ bracket~ has~ terms ~only~ of~ even~power~ of~ X, \\to~obtain ~X^7, we~ need~ only ~terms~ of~ odd~ power~ of~ X \\from~ the~ second ~bracket..\\ E x p . = ( . . 20 X 6 + 15 X 4 6 X 2 + 1 ) ( . . 6 X 5 + . . 20 X 3 + . . 6 X + . . ) S o , m u l t i p l y i n g t e r m s t h a t g i v e X 7 20 X 6 ( 6 X ) + 15 X 4 ( 20 ) X 3 6 X 2 ( 6 X 5 ) = ( + 120 300 + 36 ) X 7 = 144 X 7 Exp.\\=(..-20X^6+15X^4-6X^2 +1)*(..-6X^5 +..-20X^3+..-6X+..)\\ So, ~ multiplying ~terms~ that~ give~ X^7 \\ -20X^6*(-6X) +15X^4*(-20)X^3-6X^2*(-6X^5) \\=(+120-300+36)X^7= \boxed{-144}*X^7

Aareyan Manzoor
Nov 30, 2014

( 1 x x 2 + x 3 ) 6 (1-x-x^2+x^3 )^6 let ( 1 x ) (1-x) be a, ( x 3 x 2 ) (x^3-x^2) be b, by pascal, we get ( a + b ) 6 = a 6 + 6 a 5 b + 15 a 4 b 2 + 20 a 3 b 3 + 15 a 2 b 4 + 6 a b 5 + b 6 (a+b)^6 =a^6 +6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+b^6 now change a&b ( 1 x ) 6 + 6 ( 1 x ) 5 ( x 3 x 2 ) + 15 ( 1 x ) 4 ( x 3 x 2 ) 2 + 20 ( 1 x ) 3 ( x 3 x 2 ) 3 + 15 ( 1 x ) 2 ( x 3 x 2 ) 4 + 6 ( 1 x ) 1 ( x 3 x 2 ) 5 + ( x 3 x 2 ) 6 (1-x)^6+6(1-x)^5 (x^3-x^2 )+15(1-x)^4 (x^3-x^2 )^2+ 20(1-x)^3 (x^3-x^2 )^3+15(1-x)^2 (x^3-x^2 )^4+6(1-x)^1 (x^3-x^2 )^5+(x^3-x^2 )^6 use pascal again,notice that ( 1 x ) 6 (1-x)^6 doesnt have a 7th power, so exclude it,again after 20 ( 1 x ) 3 ( x 3 x 2 ) 3 20(1-x)^3 (x^3-x^2 )^3 the powers are too big. 6 ( 1 5 x + 10 x 2 10 x 3 + 5 x 4 x 5 ) ( x 3 x 2 ) + 15 ( 1 4 x + 6 x 2 4 x 3 + x 4 ) ( x 6 2 x 5 + x 4 ) + 20 ( 1 3 x + 3 x 2 x 3 ) ( x 9 3 x 8 + 3 x 7 x 6 ) 6(1-5x+10x^2-10x^3+5x^4-x^5 )(x^3-x^2 )+15(1-4x+6x^2-4x^3+x^4 )(x^6-2x^5+x^4 )+20(1-3x+3x^2-x^3 )(x^9-3x^8+3x^7-x^6 ) now multiply the powers to get the power( only those whose power add up to 7) 6 ( 6 x 7 ) + 15 ( 4 x 7 12 x 7 4 x 7 ) + 20 ( 3 x 7 + 3 x 7 ) 6(6x^7 )+15(-4x^7-12x^7-4x^7 )+20(3x^7+3x^7 ) 36 300 + 120 36-300+120 we get 144 \boxed {-144}

This is quite a best and simple approach

anshu garg - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...