Another complicated Trigo Sum

Algebra Level 4

Find the value of: r = 1 4 ( sin ( 2 r 1 ) π 8 ) 4 . \sum _{ r=1 }^{ 4 }{ (\sin { \frac { (2r-1)\pi }{ 8 } } } )^{ 4 }.


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 13, 2014

I used the same logic as Humberto Bento but perhaps easier to understand.

From cos 2 θ = 1 2 sin 2 θ sin 2 θ = 1 2 ( 1 cos 2 θ ) \quad \cos {2\theta} = 1 - 2\sin^2 {\theta}\quad \Rightarrow \sin^2 {\theta} = \frac {1} {2} (1 - \cos {2\theta}) s i n 4 θ = 1 4 ( 1 cos 2 θ ) 2 \Rightarrow sin^4 {\theta} = \frac {1} {4} (1 - \cos {2\theta})^2 .

Therefore,

sin 4 ( π 8 ) + sin 4 ( 3 π 8 ) + sin 4 ( 5 π 8 ) + sin 4 ( 7 π 8 ) \sin^4 {(\frac{\pi}{8})} + \sin^4 {(\frac{3\pi}{8})} + \sin^4 {(\frac{5\pi}{8})} + \sin^4 {(\frac{7\pi}{8})}

= 1 4 [ ( 1 cos π 4 ) 2 + ( 1 cos 3 π 4 ) 2 + ( 1 cos 5 π 4 ) 2 + ( 1 cos 7 π 4 ) 2 ] =\frac {1}{4} \left[ (1- \cos {\frac{\pi}{4}})^2 + (1- \cos {\frac{3\pi}{4}})^2 + (1- \cos {\frac{5\pi}{4}})^2 + (1- \cos {\frac{7\pi}{4}})^2\right]

= 1 4 [ ( 1 1 2 ) 2 + ( 1 + 1 2 ) 2 + ( 1 + 1 2 ) 2 + ( 1 1 2 ) 2 ] =\frac {1}{4} \left[ (1- \frac {1}{\sqrt{2}})^2 + (1+ \frac {1}{\sqrt{2}})^2 + (1+ \frac {1}{\sqrt{2}})^2 + (1- \frac {1}{\sqrt{2}})^2 \right]

= 1 2 [ ( 1 1 2 ) 2 + ( 1 + 1 2 ) 2 ] = 1 2 [ 1 2 + 1 2 + 1 + 2 + 1 2 ] =\frac {1}{2} \left[ (1- \frac {1}{\sqrt{2}})^2 + (1+ \frac {1}{\sqrt{2}})^2 \right] =\frac {1}{2} \left[ 1- \sqrt{2} + \frac {1}{2} + 1 + \sqrt{2} + \frac{1}{2} \right] = 1 2 ( 2 + 1 ) = 3 2 = 1.5 = \frac {1}{2} (2+1) = \frac{3}{2} = \boxed{1.5}

Kushagra Yadav
Dec 23, 2015

A simple method.

I did the same and would have got it right if I hadnt done a silly mistake. Fine solution

Shreyash Rai - 5 years, 5 months ago

Log in to reply

Thanks shreyansh

Kushagra Yadav - 5 years, 5 months ago

Log in to reply

No problem kushare

Shreyash Rai - 5 years, 5 months ago
Humberto Bento
Nov 13, 2014

Knowing that: sin 2 α = 1 cos ( 2 α ) 2 {{\sin }^{2}}\alpha =\frac{1-\cos (2\alpha )}{2}

We get: sin 4 α = ( 1 cos ( 2 α ) 2 ) 2 = 1 2 cos ( 2 α ) + cos 2 ( 2 a ) 4 = 3 4 cos ( 2 α ) + cos ( 4 a ) 8 {{\sin }^{4}}\alpha ={{\left( \frac{1-\cos (2\alpha )}{2} \right)}^{2}}=\frac{1-2\cos (2\alpha )+{{\cos }^{2}}(2a)}{4}=\frac{3-4\cos (2\alpha )+\cos (4a)}{8} with:

α = ( 2 r 1 ) π 8 \alpha =\frac{(2r-1)\pi }{8} , we get: 2 α = ( 2 r 1 ) π 4 2\alpha =\frac{(2r-1)\pi }{4} 4 α = ( 2 r 1 ) π 2 4\alpha =\frac{(2r-1)\pi }{2}

As r takes the values 1, 2, 3 and 4, c o s ( 4 α ) = 0 cos(4\alpha) = 0 and c o s ( 2 α ) cos(2\alpha) for r=1 and r=2 are simetric (as for r=3 and 4). Therefore the sum equals 4 × 3 8 = 1.5 4 \times \frac{3 }{8} = 1.5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...