Another crazy integral

Calculus Level 4

Find the value of integral

0 1 x x x x x 5 4 3 2 d x \large \int\limits_{0}^{1} \! x \sqrt[2]{x \sqrt[3]{x \sqrt[4]{x \sqrt[5]{x} \cdots}}}\, \mathrm{d} x


The answer is 0.3678.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 1 x x x x 5 4 3 d x = 0 1 x ( x ( x ( x ( x ( x ) ) 1 5 ) 1 4 ) 1 3 ) 1 2 d x = 0 1 x 1 1 ! + 1 2 ! + 1 3 ! + d x = 0 1 x e 1 d x = x e e 0 1 = 1 e 0.368 \large \begin{aligned} I & = \int_0^1 x\sqrt{x \sqrt[3] {x\sqrt[4] {x\sqrt[5] \cdots}}}\ dx \\ & = \int_0^1 x \left(x \left(x \left(x \left(x \left(x \cdots \right)\right)^\frac 15 \right)^\frac 14 \right)^\frac 13 \right)^\frac 12 dx \\ & = \int_0^1 x^{\frac 1{1!} + \frac 1{2!} + \frac 1{3!} + \cdots}\ dx \\ & = \int_0^1 x^{e-1}\ dx \\ & = \frac {x^e}e \ \bigg|_0^1 = \frac 1e \approx \boxed{0.368} \end{aligned}

Can we intigrate x^e as e is a transcendal number?

Alapan Das - 2 years, 1 month ago

Log in to reply

Yes, we can.

Chew-Seong Cheong - 2 years, 1 month ago

Small mistake on the result of the integral, should be e e in the exponent instead of e 1 e-1

Guilherme Niedu - 2 years, 1 month ago

Log in to reply

Thanks, I will amend it.

Chew-Seong Cheong - 2 years, 1 month ago

The integrand is x^(e-1), so that the value of the integral is 1/e or 0.367879

Is this taken from an MIT integration bee?

Zhang Xiaokang - 2 years, 1 month ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...