Another DE problem.

Calculus Level 5

I f t h e s o l u t i o n t o t h e D E y . . . + 3 y . . 4 y . 12 y = 0 , y ( 0 ) = 5 ; y . ( 0 ) = 2 ; y . . = 30 c a n b e w r i t t e n a s a e b t + c s i n h ( d t ) + e c o s h ( f t ) , f i n d 1 1 1 a c e b d f If\quad the\quad solution\quad to\quad the\quad DE\quad \\ \overset { \quad ... }{ y } +3\overset { \quad ..\quad }{ y } -4\overset { \quad .\quad }{ y } -12y=0,\quad y(0)=5;\quad \overset { \quad .\quad }{ y } (0)=2;\quad \\ \overset { \quad ..\quad }{ y } =30\quad can\quad be\quad written\quad as\quad a{ e }^{ bt }+csinh(dt)+ecosh(ft),\\ find\quad \begin{vmatrix} 1 & 1 & 1 \\ a & c & e \\ b & d & f \end{vmatrix}


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kartik Sharma
Jun 19, 2015

So, this is our DE -

y + 3 y 4 y 12 y = 0 \displaystyle y''' + 3y'' - 4y' - 12y = 0

Doing Laplace transform both sides

L ( y ) + 3 L ( y ) 4 L ( y ) 12 ( L ( y ) = 0 \displaystyle L(y''') + 3L(y'') - 4L(y') - 12(L(y) = 0

We can find Laplace transform for f ( n ) ( x ) {f}^{(n)}(x) through integrating by parts.

A general formula is

L ( f ( n ) ( x ) ) = s n L ( f ( x ) ) s n 1 f ( 0 ) s n 2 f ( 0 ) . . . . f ( n 1 ) ( 0 ) \displaystyle L({f}^{(n)}(x)) = {s}^{n}L(f(x)) - {s}^{n-1}f(0) - {s}^{n-2}f'(0) -.... - {f}^{(n-1)}(0)

Hence, our DE becomes

s 3 L ( y ) s 2 y ( 0 ) s y ( 0 ) y ( 0 ) + 3 s 2 L ( y ) 3 s y ( 0 ) 3 s y ( 0 ) 4 s L ( y ) + 4 y ( 0 ) 12 L ( y ) = 0 \displaystyle {s}^{3}L(y) - {s}^{2}y(0) - sy'(0) - y''(0) + 3{s}^{2}L(y) - 3sy(0) - 3sy'(0) -4sL(y) + 4y(0) - 12L(y) = 0

L ( y ) = y ( 0 ) + y ( 0 ) [ 4 s ] + y ( 0 ) [ s 2 + 3 s 4 ] s 3 + 3 s 2 4 s 12 \displaystyle L(y) = \frac{y''(0) + y'(0)[4s] + y(0)[{s}^{2}+3s-4]}{{s}^{3} + 3{s}^{2}-4s-12}

y = L 1 ( y ( 0 ) + y ( 0 ) [ 4 s ] + y ( 0 ) [ s 2 + 3 s 4 ] s 3 + 3 s 2 4 s 12 ) \displaystyle y = {L}^{-1}\left(\frac{y''(0) + y'(0)[4s] + y(0)[{s}^{2}+3s-4]}{{s}^{3} + 3{s}^{2}-4s-12}\right)

y = 2 e 3 t + 4 s i n h ( 2 t ) + 3 c o s h ( 2 t ) \displaystyle y = 2{e}^{-3t} + 4sinh(2t) + 3cosh(2t)

And you are done!

Wow! A Laplace transform solution! Did not expect that. You don't need to use Laplace transform here. You can simply use the characteristic polynomial approach for a simpler but perhaps a lengthier solution like I did. But a really great job man! (+1)

vishnu c - 5 years, 11 months ago
Vishnu C
Apr 2, 2015

Characteristic polynomial = x 3 + 3 x 2 4 x 12 x^3+3x^2-4x-12

Solutions of characteristic polynomial = -3, -2, 2

y = A e 3 t + B e 2 t + C e 2 t \therefore y= A e^{-3t} + Be^{-2t} +C e^{2t}

Substituting the given initial values after taking the appropriate derivatives, we can form the following system of linear equations:

[ 1 1 1 3 2 2 9 4 4 ] [ A B C ] = [ 5 2 30 ] \begin{bmatrix} 1 & 1 & 1 \\ -3 & -2 & 2 \\ 9 & 4 & 4 \end{bmatrix}\begin{bmatrix} A \\ B \\ C \end{bmatrix}=\begin{bmatrix} 5 \\ 2 \\ 30 \end{bmatrix}

The solution of this system is given by:

[ A B C ] = [ 2 1 2 7 2 ] \begin{bmatrix} A \\ B \\ C \end{bmatrix}=\begin{bmatrix} 2 \\ -\frac { 1 }{ 2 } \\ \frac { 7 }{ 2 } \end{bmatrix}

So this means that the solution of the differential equation is:

y = 2 e 3 t 1 2 e 2 t + 7 2 e 2 t y = 2 e^{-3t} -\frac 1 2 e^{-2t} +\frac 7 2 e^{2t}

From the identity e a t = c o s h ( a t ) + s i n h ( a t ) e^{at} = cosh(at)+sinh(at) we get,

y = 2 e 3 t + 3 c o s h ( 2 t ) + 4 s i n h ( 2 t ) y = 2e^{-3t}+3cosh(2t)+4sinh(2t)

\therefore

a = 2 ; c = 4 ; e = 3 ; b = 3 ; d = 2 ; f = 2. a=2;\quad c=4;\quad e=3;\\ b=-3;\quad d=2;\quad f=2.

and the value of the determinant= 5 . \boxed5.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...