I f t h e s o l u t i o n t o t h e D E y . . . + 3 y . . − 4 y . − 1 2 y = 0 , y ( 0 ) = 5 ; y . ( 0 ) = 2 ; y . . = 3 0 c a n b e w r i t t e n a s a e b t + c s i n h ( d t ) + e c o s h ( f t ) , f i n d ∣ ∣ ∣ ∣ ∣ ∣ 1 a b 1 c d 1 e f ∣ ∣ ∣ ∣ ∣ ∣
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Wow! A Laplace transform solution! Did not expect that. You don't need to use Laplace transform here. You can simply use the characteristic polynomial approach for a simpler but perhaps a lengthier solution like I did. But a really great job man! (+1)
Characteristic polynomial = x 3 + 3 x 2 − 4 x − 1 2
Solutions of characteristic polynomial = -3, -2, 2
∴ y = A e − 3 t + B e − 2 t + C e 2 t
Substituting the given initial values after taking the appropriate derivatives, we can form the following system of linear equations:
⎣ ⎡ 1 − 3 9 1 − 2 4 1 2 4 ⎦ ⎤ ⎣ ⎡ A B C ⎦ ⎤ = ⎣ ⎡ 5 2 3 0 ⎦ ⎤
The solution of this system is given by:
⎣ ⎡ A B C ⎦ ⎤ = ⎣ ⎡ 2 − 2 1 2 7 ⎦ ⎤
So this means that the solution of the differential equation is:
y = 2 e − 3 t − 2 1 e − 2 t + 2 7 e 2 t
From the identity e a t = c o s h ( a t ) + s i n h ( a t ) we get,
y = 2 e − 3 t + 3 c o s h ( 2 t ) + 4 s i n h ( 2 t )
∴
a = 2 ; c = 4 ; e = 3 ; b = − 3 ; d = 2 ; f = 2 .
and the value of the determinant= 5 .
Problem Loading...
Note Loading...
Set Loading...
So, this is our DE -
y ′ ′ ′ + 3 y ′ ′ − 4 y ′ − 1 2 y = 0
Doing Laplace transform both sides
L ( y ′ ′ ′ ) + 3 L ( y ′ ′ ) − 4 L ( y ′ ) − 1 2 ( L ( y ) = 0
We can find Laplace transform for f ( n ) ( x ) through integrating by parts.
A general formula is
L ( f ( n ) ( x ) ) = s n L ( f ( x ) ) − s n − 1 f ( 0 ) − s n − 2 f ′ ( 0 ) − . . . . − f ( n − 1 ) ( 0 )
Hence, our DE becomes
s 3 L ( y ) − s 2 y ( 0 ) − s y ′ ( 0 ) − y ′ ′ ( 0 ) + 3 s 2 L ( y ) − 3 s y ( 0 ) − 3 s y ′ ( 0 ) − 4 s L ( y ) + 4 y ( 0 ) − 1 2 L ( y ) = 0
L ( y ) = s 3 + 3 s 2 − 4 s − 1 2 y ′ ′ ( 0 ) + y ′ ( 0 ) [ 4 s ] + y ( 0 ) [ s 2 + 3 s − 4 ]
y = L − 1 ( s 3 + 3 s 2 − 4 s − 1 2 y ′ ′ ( 0 ) + y ′ ( 0 ) [ 4 s ] + y ( 0 ) [ s 2 + 3 s − 4 ] )
y = 2 e − 3 t + 4 s i n h ( 2 t ) + 3 c o s h ( 2 t )
And you are done!