Another Divisibility Question

Find the largest integer m m such that 1 1 m 72 9 66 6 4 33 11^m | 729^{66}-64^{33} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Alan Yan
Dec 23, 2015

We will use Lifting the Exponent Lemma . For prime p p , denote v p ( x ) v_p(x) such that p v p ( x ) x p^{v_p(x)} | x but p v p ( x ) + 1 x p^{v_p(x)+1} \nmid x , that is, the greatest power of p p that divides x x .

We have that v 11 ( 72 9 66 6 4 33 ) = v 11 ( 8 1 99 4 99 ) = v 11 ( 77 ) + v 11 ( 99 ) = 2 v_{11}(729^{66} - 64^{33}) = v_{11}(81^{99} - 4^{99}) = v_{11}(77) + v_{11}(99) = \boxed{2} .

Abdelhamid Saadi
Dec 22, 2015

On voit aisément que:

72 9 66 6 4 33 = 9 198 2 198 = a 9 b 9 o u ˋ a = 9 22 e t b = 2 22 729^{66} - 64^{33} = 9^{198} - 2^{198} = a^{9} - b^{9} \qquad où \qquad a = 9^{22} \qquad et \qquad b= 2^{22}

Nous pouvons faire: a 9 a 9 = ( a b ) ( a 2 + a b + b 2 ) ( a 6 + a 3 b 3 + a 6 ) a^{9} - a^{9} = (a - b)(a^{2} + ab + b^{2})(a^6 + a^{3}b^{3} + a^{6})

On vérifie facilement (par calcul modulo 11) que seul le terme a b a - b est divisible par 11 11

a b = 9 22 2 22 = ( 9 11 2 11 ) ( 9 11 + 2 11 ) a - b = 9^{22} - 2^{22} = (9^{11} - 2^{11})(9^{11} + 2^{11})

le terme 9 11 2 11 9^{11} - 2^{11} n'est pas divisible par 11 11

9 11 + 2 11 = ( 11 2 ) 11 + 2 11 = k = 1 10 ( 11 k ) 1 1 k ( 2 ) 11 k 9^{11} + 2^{11} = (11 - 2)^{11} + 2^{11} = \sum _{k=1}^{10} \binom {11} {k} 11^{k}(-2)^{11-k} d'où: 9 11 + 2 11 ( 11 1 ) 11 ( 2 ) 10 1 1 2 ( 2 ) 10 0 ( m o d 1 1 2 ) 9^{11} + 2^{11} \equiv \binom {11} {1} 11(-2)^{10} \equiv 11^2(-2)^{10}\equiv 0 \pmod {11^2} et 9 11 + 2 11 ( 11 2 ) 1 1 2 ( 2 ) 9 + ( 11 1 ) 11 ( 2 ) 10 1 1 2 ( 2 ) 10 121 ( m o d 1 1 3 ) 9^{11} + 2^{11} \equiv \binom {11} {2} 11^2(-2)^{9}+ \binom {11} {1} 11(-2)^{10} \equiv 11^2(-2)^{10}\equiv 121 \pmod {11^3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...