Another Divisible

Algebra Level pending

3 2 n 8 n 1 i s d i v i s i b l e b y s o m e i n t e g e r X s i m p l y f i n d t h e g r e a t e s t X { 3 }^{ 2n }-8n-1 \quad is\quad divisible\quad by\quad some\quad integer\quad X\\ simply\quad find\quad the\quad greatest\quad X


The answer is 64.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Amr Saber
Apr 26, 2014

3 2 n 8 n 1 = ( 3 2 ) n 8 n 1 = 9 n 8 n 1 = ( 1 + 8 ) n 8 n 1 = ( 1 + n C 1 8 + n C 2 8 2 + n C 3 8 3 + . . . + n C n 8 n ) 8 n 1 b u t n C 1 = n = 1 + n 8 + n C 2 8 2 + n C 3 8 3 + . . . + n C n 8 n 8 n 1 = n C 2 8 2 + n C 3 8 3 + . . . + n C n 8 n = 8 2 ( n C 2 + n C 3 8 + n C 4 8 2 + . . . + n C n 8 n 2 ) = 8 2 ( s o m e i n t e g e r s ) w h i c h i s d i v i s i b l e b y 8 2 = 64 { 3 }^{ 2n }-8n-1\quad =\quad ({ 3 }^{ 2 })^{ n }-8n-1\\ =\quad { 9 }^{ n }-8n-1\quad =\quad (1+8)^{ n }-8n-1\\ =\quad (1+^{ n }{ C }_{ 1 }8+^{ n }{ C }_{ 2 }{ 8 }^{ 2 }+^{ n }{ C }_{ 3 }{ 8 }^{ 3 }+\quad ...\quad +^{ n }{ C }_{ n }{ 8 }^{ n })-8n-1\quad but\quad ^{ n }{ C }_{ 1 }=n\\ =\quad 1+n8+^{ n }{ C }_{ 2 }{ 8 }^{ 2 }+^{ n }{ C }_{ 3 }{ 8 }^{ 3 }+\quad ...\quad +^{ n }{ C }_{ n }{ 8 }^{ n }-8n-1\\ =\quad ^{ n }{ C }_{ 2 }{ 8 }^{ 2 }+^{ n }{ C }_{ 3 }{ 8 }^{ 3 }+\quad ...\quad +^{ n }{ C }_{ n }{ 8 }^{ n }\\ =\quad { 8 }^{ 2 }(^{ n }{ C }_{ 2 }+^{ n }{ C }_{ 3 }{ 8 }+^{ n }{ C }_{ 4 }{ 8^{ 2 }+ }\quad ...\quad +^{ n }{ C }_{ n }{ 8 }^{ n-2 })\\ =\quad { 8 }^{ 2 }\quad (some\quad integers)\quad which\quad is\quad divisible\quad by\quad { 8 }^{ 2 }\quad =\quad 64

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...