An algebra problem by Alessandro Fenu

Algebra Level 2

Let a , b , c R + + { 0 } a, b, c \in \mathbb{R^+ + \{0\}} such that ( a + 1 ) ( b + 1 ) ( c + 1 ) = 8 (a+1)(b+1)(c+1)=8 .

Is a b c 1 abc \leq 1 necessarily true?

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alessandro Fenu
Aug 8, 2018

Using AM-GM independently on the terms a , 1 a, 1 then b , 1 b, 1 and then c , 1 c, 1 we obtain

{ a + 1 2 a ( a + 1 ) 2 a b + 1 2 b ( b + 1 ) 2 b c + 1 2 c ( c + 1 ) 2 c . \begin{cases} \frac{a+1}{2}\geq \sqrt{a}\Rightarrow (a+1)\geq 2\cdot \sqrt{a} \\ \frac{b+1}{2}\geq \sqrt{b}\Rightarrow (b+1)\geq 2\cdot \sqrt{b} \\ \frac{c+1}{2}\geq \sqrt{c}\Rightarrow (c+1)\geq 2\cdot \sqrt{c}. \end{cases}

Multiplying all of these together we get :

( a + 1 ) ( b + 1 ) ( c + 1 ) 8 a b c (a+1)(b+1)(c+1)\geq 8\cdot \sqrt{a\cdot b \cdot c} ,

or, namely, using the fact that ( a + 1 ) ( b + 1 ) ( c + 1 ) = 8 a b c 1 (a+1)(b+1)(c+1)=8 \Rightarrow abc\leq 1

bel problemino!!

tommaso galligioni - 2 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...