VMO 2005

Algebra Level 5

x 3 x + 1 = 3 y + 2 y \large x-3\sqrt{x+1}=3\sqrt{y+2}-y

If x 1 x\geq -1 and y 2 y\geq -2 satisfy the equation above, find the closed form of the sum of the maximum and the minimum value of A = x + y A=x+y .

Submit your answer to 3 decimal places


This problem is part of the set: Max and min .


The answer is 31.992.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P C
Mar 24, 2016

From the condition, we can see that x + y = 3 ( x + 1 + y + 2 ) x+y=3(\sqrt{x+1}+\sqrt{y+2}) Now if we set x + 1 = t \sqrt{x+1}=t and y + 2 = u \sqrt{y+2}=u then we'll have this following system { u 2 + t 2 3 = 3 ( u + v ) u 2 + v 2 3 = A \begin{cases} u^2+t^2-3=3(u+v)\\u^2+v^2-3=A\end{cases} { u + v = A 3 u v = 1 2 ( A 2 9 A 3 ) \Leftrightarrow\begin{cases} u+v=\frac{A}{3}\\ uv=\frac{1}{2}\bigg(\frac{A^2}{9}-A-3\bigg)\end{cases} So u , v u,v are the roots of X 2 A 3 X + 1 2 ( A 2 9 A 3 ) = 0 ( ) X^2-\frac{A}{3}X+\frac{1}{2}\bigg(\frac{A^2}{9}-A-3\bigg)=0 \ (*) In order for ( ) (*) to have 2 non-negative roots { Δ 0 x 1 x 2 0 x 1 + x 2 0 \begin{cases} \Delta\geq 0\\ x_1x_2\geq 0\\ x_1+x_2\geq 0\end{cases} { A 2 9 + 2 A + 6 0 A 2 9 A 3 0 A 3 0 \Leftrightarrow\begin{cases}\frac{-A^2}{9}+2A+6\geq 0\\ \frac{A^2}{9}-A-3\geq 0\\ \frac{A}{3}\geq 0\end{cases} 9 + 3 21 2 A 9 + 3 15 \Leftrightarrow \frac{9+3\sqrt{21}}{2}\leq A\leq 9+3\sqrt{15} Therefore the sum is 31.992 \approx 31.992

Very nicely done!

Calvin Lin Staff - 5 years, 2 months ago

nice approach

akshay meshram - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...