Another Factorial Summation! (CMI 2010)

Algebra Level 3

2 0 ! + 1 ! + 2 ! + 3 1 ! + 2 ! + 3 ! + + 100 98 ! + 99 ! + 100 ! \dfrac2{0! +1!+2!} + \dfrac3{1!+2!+3!} + \cdots+ \dfrac{100}{98!+99!+100!}

If the value of the expression above is equal to x x , evaluate x + 1 100 ! x + \dfrac1{100!} .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let’s rewrite it in summation notation as - \text{Let's rewrite it in summation notation as -}

S = k = 0 98 k + 2 k ! + ( k + 1 ) ! + ( k + 2 ) ! \large \mathfrak{S}=\sum_{k=0}^{98} \frac{k+2}{k!+(k+1)!+(k+2)!}

S = k = 0 98 k + 2 k ! + ( k + 1 ) k ! + ( k + 2 ) ( k + 1 ) k ! \mathfrak{S}=\sum_{k=0}^{98} \frac{k+2}{k!+(k+1)k!+(k+2)(k+1)k!}

S = k = 0 98 k + 2 k ! ( k + 2 + ( k + 1 ) ( k + 2 ) ) \mathfrak{S}=\sum_{k=0}^{98} \frac{k+2}{k!(k+2 + (k+1)(k+2))}

S = k = 0 98 k + 2 k ! ( k + 2 ) 2 ) \mathfrak{S}=\sum_{k=0}^{98} \frac{k+2}{k!(k+2)^2)}

S = k = 0 98 1 k ! ( k + 2 ) ) \mathfrak{S}=\sum_{k=0}^{98} \frac{1}{k!(k+2))}

S = k = 0 98 k + 1 k ! ( k + 2 ) ( k + 1 ) ) \mathfrak{S}=\sum_{k=0}^{98} \frac{k+1}{k!(k+2)(k+1))}

S = k = 0 98 k + 2 1 ( k + 2 ) ! \mathfrak{S}=\sum_{k=0}^{98} \frac{k+2-1}{(k+2)!}

S = k = 0 98 k + 2 ( k + 2 ) ! 1 ( k + 2 ) ! \mathfrak{S}=\sum_{k=0}^{98} \frac{k+2}{(k+2)!}-\frac{1}{(k+2)!}

S = k = 0 98 1 ( k + 1 ) ! 1 ( k + 2 ) ! \mathfrak{S}=\sum_{k=0}^{98} \frac{1}{(k+1)!}-\frac{1}{(k+2)!}

Now the above is a telescoping series and looks as follows : \text{Now the above is a telescoping series and looks as follows :}

S = 1 1 ! 1 2 ! + 1 2 ! 1 3 ! + 1 3 ! + 1 99 ! 1 100 ! \large \color{#624F41}{\mathfrak{S} = \frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\cdots+\frac{1}{99!}-\frac{1}{100!}}

S = 1 1 100 ! \large \mathfrak{S} = 1-\frac{1}{100!}

So , S + 1 100 ! = 1 \text{So} , \mathfrak{S} + \frac{1}{100!} =\boxed{1}

Same approach :) (+1)

In the last line it should be 1 100 ! \frac{1}{100!} not 1 100 \frac{1}{100}

Aditya Dhawan - 5 years, 2 months ago

Log in to reply

Thanks! I hve edited that

Aditya Narayan Sharma - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...