Another Fibonacci series

Calculus Level 3

Let F n F_n be the n n th Fibonacci number, where F 1 = 1 F_1=1 , F 2 = 1 F_2=1 and F n + 1 = F n + F n 1 F_{n+1}=F_n+F_{n-1} for n 2 n \ge 2 . Evaluate the sum n = 2 1 F n + 1 F n 1 . \sum_{n=2}^\infty \frac{1}{F_{n+1} F_{n-1}}.

Hint: If you're stuck you may want to try this problem first.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 12, 2018

S = n = 2 1 F n + 1 F n 1 = n = 2 F n F n ( F n + F n 1 ) F n 1 = n = 2 1 F n ( 1 F n 1 1 F n + F n 1 ) = n = 2 1 F n ( 1 F n 1 1 F n + 1 ) = n = 2 ( 1 F n 1 F n 1 F n F n + 1 ) = 1 F 1 F 2 1 F 2 F 3 + 1 F 2 F 3 1 F 3 F 4 + 1 F 3 F 4 1 F 4 F 5 + 1 F 4 F 5 = 1 F 1 F 2 = 1 \begin{aligned} S & = \sum_{n=2}^\infty \frac 1{{\color{#3D99F6}F_{n+1}}F_{n-1}} \\ & = \sum_{n=2}^\infty \frac {\color{#D61F06}F_n}{{\color{#D61F06}F_n}{\color{#3D99F6}\left(F_n+F_{n-1}\right)}F_{n-1}} \\ & = \sum_{n=2}^\infty \frac 1{F_n} \left(\frac 1{F_{n-1}}-\frac 1{F_n+F_{n-1}}\right) \\ & = \sum_{n=2}^\infty \frac 1{F_n} \left(\frac 1{F_{n-1}}-\frac 1{F_{n+1}}\right) \\ & = \sum_{n=2}^\infty \left(\frac 1{F_{n-1}F_n}-\frac 1{F_nF_{n+1}}\right) \\ & = \frac 1{F_1F_2} \color{#3D99F6} \cancel{- \frac 1{F_2F_3} + \frac 1{F_2F_3}} \color{#D61F06}\cancel{- \frac 1{F_3F_4} + \frac 1{F_3F_4}}\color{#3D99F6} \cancel{- \frac 1{F_4F_5} +\frac 1{F_4F_5}} - \cdots \\ & = \frac 1{F_1F_2} = \boxed 1 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...