Another Functional Equation #2

Algebra Level 5

f ( x + y ) = 3 y f ( x ) + 2 x f ( y ) \large{f(x+y) = 3^yf(x) + 2^xf(y)}

Let f ( x ) f(x) be a function where f : R R f: \mathbb R \to \mathbb R for which f ( 1 ) = 1 f(1) = 1 such that for all real x , y x,y , the functional equation above satisfies.

Then find the value of f ( 20 ) f ( 15 ) f(20) - f(15) .

Note : To avoid tediousness, first generalize f ( x ) f(x) , then use a calculator to find the value asked.


The answer is 3471419686.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Consider we substitute y to x and x to y.

f ( y + x ) = f ( x + y ) = 3 x f ( y ) + 2 y f ( x ) = 3 y f ( x ) + 2 x f ( y ) \displaystyle f(y+x)=f(x+y)=3^{x}f(y)+2^{y}f(x)=3^{y}f(x)+2^{x}f(y)

( 3 x 2 x ) f ( y ) = ( 3 y 2 y ) f ( x ) \displaystyle \left ( 3^{x}-2^{x} \right )f(y)=\left ( 3^{y}-2^{y} \right )f(x)

( 3 x 2 x f ( x ) ) = ( 3 y 2 y f ( y ) ) \displaystyle \left ( \dfrac{3^{x}-2^{x}}{f(x)} \right )=\left ( \dfrac{3^{y}-2^{y}}{f(y)} \right )

This relation has to be true for all x,y and since x,y are independent variables, so, these ratio have to be constant.

( 3 x 2 x f ( x ) ) = 1 C \displaystyle\left ( \dfrac{3^{x}-2^{x}}{f(x)} \right )=\dfrac{1}{C}

f ( x ) = C ( 3 x 2 x ) \displaystyle f(x)=C(3^{x}-2^{x}) and from f ( 1 ) = 1 f(1)=1 then C = 1 C=1

f ( x ) = ( 3 x 2 x ) \displaystyle f(x)=(3^{x}-2^{x})

f ( 20 ) f ( 15 ) = 3 20 2 20 3 15 + 2 15 = 3471419686 \displaystyle f(20)-f(15)=3^{20}-2^{20}-3^{15}+2^{15}=\boxed{3471419686}

Since we require values at only integral points, a much simpler approach would be to substitute x = n , y = 1 x=n, y=1 . This gives the following recursion f ( n + 1 ) = 3 f ( n ) + 2 n f(n+1)=3f(n)+2^n Which is simpler to solve or just compute.

Abhishek Sinha - 5 years, 9 months ago
Chew-Seong Cheong
Aug 20, 2015

It is given that: { f ( x + y ) = 3 y f ( x ) + 2 x f ( y ) f ( 1 ) = 1 \begin{cases} f(x+y) = 3^y f(x) + 2^x f(y) \\ f(1) = 1 \end{cases}

{ f ( n + 1 ) = 3 f ( n ) + 2 n f ( 1 ) = 3 f ( n ) + 2 n f ( 1 + n ) = 3 n f ( 1 ) + 2 f ( n ) = 3 n + 2 f ( n ) \Rightarrow \begin{cases} f(n+1) = 3f(n) + 2^nf(1) = 3f(n) + 2^n \\ f(1+n) = 3^n f(1) + 2f(n) = 3^n + 2f(n) \end{cases}

3 f ( n ) + 2 n = 3 n + 2 f ( n ) f ( n ) = 3 n 2 n f ( 20 ) f ( 15 ) = 3 20 2 20 3 15 + 2 15 = 3471419686 \begin{aligned} \Rightarrow 3f(n) + 2^n & = 3^n + 2f(n) \\ f(n) & = 3^n - 2^n \\ \Rightarrow f(20) - f(15) & = 3^{20} - 2^{20} - 3^{15} + 2^{15} \\ & = \boxed{3471419686} \end{aligned}

Cool Solution + Nice approach an upvote given

Department 8 - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...