Evaluate .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Pair up the products such that their arguments sum to 4 π , i.e., ( 1 + tan 1 8 0 π ) ( 1 + tan 1 8 0 4 4 π ) , ( 1 + tan 1 8 0 2 π ) ( 1 + tan 1 8 0 4 3 π ) , etc. Let x and y be two such arguments. Expanding the product gives ( 1 + tan x ) ( 1 + tan y ) = 1 + tan x + tan y + tan x tan y . From tan ( x + y ) = 1 − tan x tan y tan x + tan y , 1 + tan x + tan y + tan x tan y = 1 + tan ( x + y ) ( 1 − tan x tan y ) + tan x tan y . Because x + y = 4 π , ( 1 + tan x ) ( 1 + tan y ) = 1 + 1 − tan x tan y + tan x tan y = 2 . There are 22 such pairs, and 1 + tan 1 8 0 4 5 π = 2 , so the answer is 2 2 3 , or 8 3 8 8 6 0 8 .