Another Hot Integral

Calculus Level 5

0 sin ( x 2 ) sin ( 1 x 2 ) d x = π A ( sin B cos B + e C ) \int_{0}^{\infty}\sin(x^2)\sin\left(\frac{1}{x^2}\right)\,dx=\sqrt{\frac{\pi}{A}}\left(\sin{B}-\cos{B}+e^C\right)

The above equation holds true for distinct integers A A , B B , and C C . Find A + B + C A+B+C .


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jul 1, 2019

The substitution y = x 1 y = x^{-1} gives I 1 = 0 e x 2 x 2 d x = 0 e ( x x 1 ) 2 2 d x = 0 e ( y y 1 ) 2 2 y 2 d y I_1 \; = \; \int_0^\infty e^{-x^2-x^{-2}}\,dx \; = \; \int_0^\infty e^{-(x-x^{-1})^2-2}\,dx \; = \; \int_0^\infty e^{-(y-y^{-1})^2-2}y^{-2}\,dy and hence I 1 = 1 2 0 e ( x x 1 ) 2 2 ( 1 + x 2 ) d x = 1 2 R e z 2 2 d z = 1 2 π e 2 I_1 \; =\; \tfrac12\int_0^\infty e^{-(x-x^{-1})^2-2}\,(1 + x^{-2})\,dx \; =\; \tfrac12\int_{\mathbb{R}} e^{-z^2-2}\,dz \; = \; \tfrac12\sqrt{\pi}e^{-2} Similary, since X 1 X cos ( x 2 + x 2 ) d x = X 1 X cos [ ( x x 1 ) 2 + 2 ] d x = X 1 X cos [ ( y y 1 ) 2 + 2 ] y 2 d y = 1 2 X 1 X cos [ ( x x 1 ) 2 + 2 ] ( 1 + x 2 ) d x = 1 2 ( X X 1 ) X X 1 cos ( u 2 + 2 ) d u \begin{aligned} \int_{X^{-1}}^X \cos(x^2 + x^{-2})\,dx & = \; \int_{X^{-1}}^X \cos\big[(x-x^{-1})^2+2\big]\,dx \; = \; \int_{X^{-1}}^X \cos\big[(y-y^{-1})^2+2\big] y^{-2}\,dy \\ & = \; \tfrac12\int_{X^{-1}}^X \cos\big[(x-x^{-1})^2+2\big]\,(1 + x^{-2})\,dx \; = \; \tfrac12\int_{-(X-X^{-1})}^{X - X^{-1}}\cos(u^2+2)\,du \end{aligned} we see, letting X X \to \infty , that I 2 = 0 cos ( x 2 + x 2 ) d x = 1 2 R cos ( u 2 + 2 ) d u = π 2 2 ( cos 2 sin 2 ) I_2 \; = \; \int_0^\infty \cos(x^2+x^{-2})\,dx \; = \; \tfrac12\int_{\mathbb{R}}\cos(u^2+2)\,du \; = \; \tfrac{\sqrt{\pi}}{2\sqrt{2}}\big(\cos 2 - \sin 2\big) Finally, integrating the analytic function e i ( z 2 z 2 ) e^{i(z^2-z^{-2})} about (almost) the octant wedge defined by the x x -axis, the line y = x y=x , and circles radius R R and ε \varepsilon about the origin, we can show, letting R R \to \infty and ε 0 \varepsilon \to 0 that I 3 = 0 e i ( x 2 x 2 ) d x = 1 2 ( 1 + i ) 0 e ( x 2 + x 2 ) d x = 1 2 ( 1 + i ) I 1 = 1 2 2 π ( 1 + i ) e 2 I_3 \; = \; \int_0^\infty e^{i(x^2 - x^{-2})}\,dx \; = \; \tfrac{1}{\sqrt{2}}(1+i)\int_0^\infty e^{-(x^2+x^{-2})}\,dx \; = \; \tfrac{1}{\sqrt{2}}(1+i)I_1 \; =\; \tfrac{1}{2\sqrt{2}}\sqrt{\pi}(1+i)e^{-2} and hence I 4 = 0 cos ( x 2 x 2 ) d x = R e ( I 3 ) = 1 2 2 π e 2 I_4 \; = \; \int_0^\infty \cos(x^2 - x^{-2})\,dx \; = \; \mathfrak{Re}(I_3) \; = \; \tfrac{1}{2\sqrt{2}}\sqrt{\pi}e^{-2} Thus 0 sin ( x 2 ) sin ( x 2 ) d x = 1 2 0 [ cos ( x 2 x 2 ) cos ( x 2 + x 2 ) ] d x = 1 2 ( I 4 I 2 ) = 1 4 2 π [ sin 2 cos 2 + e 2 ] \int_0^\infty \sin(x^2)\sin(x^{-2})\,dx \; =\; \tfrac12\int_0^\infty \big[\cos(x^2-x^{-2}) - \cos(x^2 + x^{-2})\big]\,dx \; = \; \tfrac12(I_4 - I_2) \; = \; \tfrac{1}{4\sqrt{2}}\sqrt{\pi}\big[\sin2 - \cos2 + e^{-2}\big] so that A + B + C = 32 + 2 2 = 32 A + B + C = 32 + 2 - 2 = \boxed{32} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...