Another Integral Limit

Calculus Level 5

lim n 0 π / 2 n ( 1 cos x n ) d x \large\lim_{n \to \infty} \int_{0}^{\pi/2}n \left(1-\sqrt[n]{\cos x}\right) \mathrm{d}x

Evaluate the limit above, give your answer to 3 decimal places.


The answer is 1.0887.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hasan Kassim
Feb 28, 2015

I = lim n 0 π 2 1 cos 1 n x 1 n d x \displaystyle I= \lim_{n\to \infty } \int_0^{\frac{\pi}{2}} \frac{1-\cos^{\frac{1}{n}}x }{\frac{1}{n}} dx

Use L'Hospital Rule:

I = lim n 0 π 2 ( 1 n ) cos 1 n x ln ( cos x ) ( 1 n ) d x \displaystyle I = \lim_{n\to \infty } \int_0^{\frac{\pi}{2}} \frac{-(\frac{1}{n} )' \cos^{\frac{1}{n}}x \ln(\cos x)}{(\frac{1}{n})'} dx

= lim n 0 π 2 cos 1 n x ln ( cos x ) d x \displaystyle = -\lim_{n\to \infty } \int_0^{\frac{\pi}{2}} \cos^{\frac{1}{n}}x \ln(\cos x) dx

I = 0 π 2 ln ( cos x ) d x \displaystyle I = -\int_0^{\frac{\pi}{2}} \ln(\cos x) dx

I = 0 π 2 ln ( sin x ) d x ( x ( π 2 x ) \displaystyle I = -\int_0^{\frac{\pi}{2}} \ln(\sin x) dx ( {\color{#3D99F6}{x \to (\frac{\pi}{2} -x )}}

= > 2 I = 0 π 2 ln ( sin 2 x 2 ) d x \displaystyle => 2I = -\int_0^{\frac{\pi}{2}} \ln(\frac{\sin 2x}{2}) dx

= 0 π 2 ln ( sin 2 x ) d x + 0 π 2 ln ( 2 ) d x \displaystyle = -\int_0^{\frac{\pi}{2}} \ln(\sin 2x) dx + \int_0^{\frac{\pi}{2}} \ln(2)dx

= 1 2 0 π ln ( sin x ) d x + π 2 ln 2 \displaystyle = -\frac{1}{2} \int_0^{\pi} \ln(\sin x) dx + \frac{\pi}{2} \ln 2

(used x x 2 {\color{#3D99F6}{x \to \frac{x}{2} }} )

= 1 2 π 2 π 2 ln ( cos x ) d x + π 2 ln 2 \displaystyle = -\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \ln(\cos x) dx + \frac{\pi}{2} \ln 2

(used x ( π 2 x ) {\color{#3D99F6}{x \to (\frac{\pi}{2} -x ) }} )

= I + π 2 ln 2 \displaystyle = I + \frac{\pi}{2} \ln 2

= > I = π 2 ln 2 \displaystyle => \boxed{I = \frac{\pi}{2} \ln 2}

Can u plz tell me how u got lncosx

Kyle Finch - 6 years ago

Log in to reply

A derivative rule:

d ( a u ( x ) ) d x = a u ( x ) ln ( u ( x ) ) u ( x ) \displaystyle \frac{d(a^{u(x)})}{dx} = a^{u(x)} \ln (u(x)) u'(x)

Hasan Kassim - 6 years ago
Aaghaz Mahajan
Nov 6, 2018

Well, we can also solve this using the Beta Function and then using Stirling's approximation........!!!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...