KMO Problem # 1

If x , y x, y and z z are positive integers satisfying 1 + 4 x + 4 y = z 2 , \large 1 + 4^x + 4^y = z^2 , what is the largest possible value of z z that satisfies the equation above and is less than or equal to 10,000?


Source: Final Round Question 3 from the Korean Olympiad 2007 .


The answer is 8193.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Christian Daang
Feb 13, 2017

WLOG, x y x \ge y

Since 1 + 4 x + 4 y 1 + 4^x + 4^y is odd, z = 2 k + 1 ; k 0 , 1 , 2 , . . . \implies z = 2k + 1 ; k \in \ {0, 1, 2, ...}

1 + 4 x + 4 y = z 2 = ( 2 k + 1 ) 2 1 + 2 2 x + 2 2 y = 4 k ( k + 1 ) + 1 2 2 x + 2 2 y = 4 k ( k + 1 ) 2 2 x 2 + 2 2 y 2 = k ( k + 1 ) 1 + 4^x + 4^y = z^2 = (2k + 1)^2 \\ 1 + 2^{2x} + 2^{2y} = 4k(k+1) + 1 \\ 2^{2x} + 2^{2y} = 4k(k + 1) \\ 2^{2x - 2} + 2^{2y - 2} = k(k+1)

let k = 2 v z = 2 v + 1 + 1 k = 2^v \implies z = 2^{v + 1} + 1 2 2 x 2 + 2 2 y 2 = ( 2 v ) ( 2 v + 1 ) = 2 2 v + 2 v 2 x 2 = 2 v , 4 y 4 = 2 v x = v + 1 , y = 2 v + 4 4 = v + 2 2 2^{2x - 2} + 2^{2y - 2} = \left( 2^v \right) \left( 2^v + 1\right) = 2^{2v} + 2^v \\ 2x - 2 = 2v , 4y - 4 = 2v \\ x = v + 1, y = \cfrac{2v + 4}{4} = \ \cfrac{v+2}{2}

v must be even v = 2 p z = 2 2 p + 1 + 1 \implies v = 2p \implies z = 2^{2p + 1} + 1 x = 2 p + 1 , y = p + 1 , z = 2 2 p + 1 + 1 2 2 p + 1 + 1 10 , 000 2 2 p + 1 9 , 999 2 p + 1 l o g 2 9999 13.28 max ( 2 p + 1 ) = 13 max ( z 10 , 000 ) = 2 13 + 1 = 8 , 193 x = 2p + 1, y = p + 1, z = 2^{2p + 1} + 1 \\ 2^{2p + 1} + 1 \le 10,000 \\ 2^{2p + 1} \le 9,999 \\ 2p + 1 \le log_{2} 9999 \approx 13.28 \\ \text{max} \ (2p + 1) = 13 \\ \text{max} \ (z \le 10,000) = 2^{13} + 1 = \ \boxed{8,193}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...