Another limit

Calculus Level 5

lim x 0 1 x 3 ( 1 1 + x 1 + a x 1 + b x ) \large \lim_{x\to 0} \frac{1}{x^3}\left(\frac{1}{\sqrt{1+x}}-\frac{1+ax}{1+bx} \right)

If the above limit exists and is equal to l l , find the value of 1 a 2 l + 3 b \dfrac{1}{a}-\dfrac{2}{l}+\dfrac{3}{b} .


The answer is 72.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 24, 2019

l = lim x 0 1 x 3 ( 1 1 + x 1 + a x 1 + b x ) A 0/0 case, L’H o ˆ pital’s rule applies = lim x 0 1 3 x 2 ( 1 2 ( 1 + x ) 3 2 a ( 1 + b x ) b ( 1 + a x ) ( 1 + b x ) 2 ) Differentiate up and down w,r,t, x = lim x 0 1 3 x 2 ( 1 2 ( 1 + x ) 3 2 a b ( 1 + b x ) 2 ) For l to exist 1 2 a + b = 0 = lim x 0 1 6 x 2 ( ( 1 + x ) 3 2 1 ( 1 + b x ) 2 ) a b = 1 2 = lim x 0 1 12 x ( 3 2 ( 1 + x ) 5 2 + 2 b ( 1 + b x ) 3 ) Apply L’H o ˆ pital’s rule again = lim x 0 1 8 x ( ( 1 + x ) 5 2 1 ( 1 + 3 4 x ) 3 ) For l to exist b = 3 4 = lim x 0 1 8 ( 5 2 ( 1 + x ) 7 2 + 3 × 3 4 ( 1 + 3 4 x ) 4 ) Apply L’H o ˆ pital’s rule again = 1 8 ( 5 2 + 9 4 ) = 1 32 \begin{aligned} l & = \lim_{x \to 0} \frac 1{x^3} \left(\frac 1{\sqrt{1+x}} - \frac {1+ax}{1+bx}\right) & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies} \\ & = \lim_{x \to 0} \frac 1{3x^2} \left(- \frac 12 (1+x)^{-\frac 32} - \frac {a(1+bx)-b(1+ax)}{(1+bx)^2}\right) & \small \color{#3D99F6} \text{Differentiate up and down w,r,t, }x \\ & = \lim_{x \to 0} \frac 1{3x^2} \left(- \frac 12 (1+x)^{-\frac 32} - \frac {a-b}{(1+bx)^2}\right) & \small \color{#3D99F6} \text{For }l \text{ to exist }- \frac 12 - a + b = 0 \\ & = \lim_{x \to 0} - \frac 1{6x^2} \left((1+x)^{-\frac 32} - \frac 1{(1+bx)^2}\right) & \small \color{#3D99F6} \implies a-b = - \frac 12 \\ & = \lim_{x \to 0} - \frac 1{12x} \left(-\frac 32(1+x)^{-\frac 52} + \frac {2b}{(1+bx)^3}\right) & \small \color{#3D99F6} \text{Apply L'Hôpital's rule again} \\ & = \lim_{x \to 0} \frac 1{8x} \left((1+x)^{-\frac 52} - \frac 1{\left(1+\frac 34 x\right)^3}\right) & \small \color{#3D99F6} \text{For }l \text{ to exist } \implies b = \frac 34 \\ & = \lim_{x \to 0} \frac 1{8} \left(-\frac 52(1+x)^{-\frac 72} + \frac {3\times \frac 34}{\left(1+\frac 34 x\right)^4}\right) & \small \color{#3D99F6} \text{Apply L'Hôpital's rule again} \\ & = \frac 1{8} \left(-\frac 52 + \frac 94 \right) = - \frac 1{32} \end{aligned}

Therefore, 1 a 2 l + 3 b = 4 + 64 + 4 = 72 \dfrac 1a - \dfrac 2l + \dfrac 3b = 4+64+4 = \boxed{72} .


Alternative solution as suggested by @Aaghaz Mahajan

l = lim x 0 1 x 3 ( 1 1 + x 1 + a x 1 + b x ) By Maclaurin series = lim x 0 1 x 3 ( ( 1 1 2 x + 3 8 x 2 5 16 x 3 + ) ( 1 + a x ) ( 1 b x + b 2 x 2 b 3 x 3 + ) ) = lim x 0 1 x 3 ( ( 1 1 2 x + 3 8 x 2 5 16 x 3 + ) ( 1 + ( a b ) x + ( b 2 a b ) x 2 + ( a b 2 b 3 ) x 3 + ) ) = lim x 0 ( ( b a 1 2 ) 1 x 2 + ( 3 8 + a b b 2 ) 1 x ( 5 16 + a b 2 b 3 ) + O ( x ) ) \begin{aligned} l & = \lim_{x \to 0} \frac 1{x^3} \left({\color{#3D99F6} \frac 1{\sqrt{1+x}}} - \frac {1+ax}{\color{#3D99F6} 1+bx}\right) & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \lim_{x \to 0} \frac 1{x^3} \left({\color{#3D99F6}\left(1-\frac 12 x + \frac 38 x^2 - \frac 5{16}x^3 + \cdots \right)} - (1+ax)\color{#3D99F6}\left(1 - bx + b^2x^2 - b^3x^3 + \cdots \right) \right) \\ & = \lim_{x \to 0} \frac 1{x^3} \left(\left(1-\frac 12 x + \frac 38 x^2 - \frac 5{16}x^3 + \cdots \right) - \left(1 + (a- b)x + (b^2-ab)x^2 + (ab^2- b^3) x^3 + \cdots \right) \right) \\ & = \lim_{x \to 0} \left(\left(b-a-\frac 12\right) \frac 1{x^2} + \left(\frac 38 +ab - b^2 \right) \frac 1x - \left(\frac 5{16} + ab^2 - b^3 \right) + O(x) \right) \end{aligned}

For l l to exist,

{ b a 1 2 = 0 3 8 + a b b 2 = 3 8 + b ( a b ) = 3 8 b 2 = 0 b = 3 4 a = 1 4 \implies \begin{cases} b-a-\dfrac 12 = 0 \\ \dfrac 38 +ab - b^2 = \dfrac 38 +b(a-b) = \dfrac 38 - \dfrac b2 = 0 \end{cases} \implies b = \dfrac 34 \implies a = \dfrac 14

Then l = ( 5 16 + a b 2 b 3 ) = 5 16 1 4 × 9 16 + 27 64 = 1 32 l = - \left(\dfrac 5{16} + ab^2 - b^3 \right) = - \dfrac 5{16} - \dfrac 14 \times \dfrac 9{16} + \dfrac {27}{64} = - \dfrac 1{32} and 1 a 2 l + 3 4 = 4 + 64 + 4 = 72 \dfrac 1a - \dfrac 2l + \dfrac 34 = 4 + 64 + 4 = \boxed{72} .

Nice approach!!! Sir, we could also expand the expression into its Taylor Series and then apply the condition of the coefficients of all lower order terms than x 3 x^3 to be 0

Aaghaz Mahajan - 2 years, 2 months ago

Log in to reply

Yes, i didn't thought of that.

Chew-Seong Cheong - 2 years, 2 months ago

Provided your approach as solution.

Chew-Seong Cheong - 2 years, 2 months ago

Log in to reply

Thanks Sir!!!

Aaghaz Mahajan - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...