x → 0 lim x 3 1 ( 1 + x 1 − 1 + b x 1 + a x )
If the above limit exists and is equal to l , find the value of a 1 − l 2 + b 3 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice approach!!! Sir, we could also expand the expression into its Taylor Series and then apply the condition of the coefficients of all lower order terms than x 3 to be 0
Log in to reply
Yes, i didn't thought of that.
Provided your approach as solution.
Problem Loading...
Note Loading...
Set Loading...
l = x → 0 lim x 3 1 ( 1 + x 1 − 1 + b x 1 + a x ) = x → 0 lim 3 x 2 1 ( − 2 1 ( 1 + x ) − 2 3 − ( 1 + b x ) 2 a ( 1 + b x ) − b ( 1 + a x ) ) = x → 0 lim 3 x 2 1 ( − 2 1 ( 1 + x ) − 2 3 − ( 1 + b x ) 2 a − b ) = x → 0 lim − 6 x 2 1 ( ( 1 + x ) − 2 3 − ( 1 + b x ) 2 1 ) = x → 0 lim − 1 2 x 1 ( − 2 3 ( 1 + x ) − 2 5 + ( 1 + b x ) 3 2 b ) = x → 0 lim 8 x 1 ( ( 1 + x ) − 2 5 − ( 1 + 4 3 x ) 3 1 ) = x → 0 lim 8 1 ( − 2 5 ( 1 + x ) − 2 7 + ( 1 + 4 3 x ) 4 3 × 4 3 ) = 8 1 ( − 2 5 + 4 9 ) = − 3 2 1 A 0/0 case, L’H o ˆ pital’s rule applies Differentiate up and down w,r,t, x For l to exist − 2 1 − a + b = 0 ⟹ a − b = − 2 1 Apply L’H o ˆ pital’s rule again For l to exist ⟹ b = 4 3 Apply L’H o ˆ pital’s rule again
Therefore, a 1 − l 2 + b 3 = 4 + 6 4 + 4 = 7 2 .
Alternative solution as suggested by @Aaghaz Mahajan
l = x → 0 lim x 3 1 ( 1 + x 1 − 1 + b x 1 + a x ) = x → 0 lim x 3 1 ( ( 1 − 2 1 x + 8 3 x 2 − 1 6 5 x 3 + ⋯ ) − ( 1 + a x ) ( 1 − b x + b 2 x 2 − b 3 x 3 + ⋯ ) ) = x → 0 lim x 3 1 ( ( 1 − 2 1 x + 8 3 x 2 − 1 6 5 x 3 + ⋯ ) − ( 1 + ( a − b ) x + ( b 2 − a b ) x 2 + ( a b 2 − b 3 ) x 3 + ⋯ ) ) = x → 0 lim ( ( b − a − 2 1 ) x 2 1 + ( 8 3 + a b − b 2 ) x 1 − ( 1 6 5 + a b 2 − b 3 ) + O ( x ) ) By Maclaurin series
For l to exist,
⟹ ⎩ ⎪ ⎨ ⎪ ⎧ b − a − 2 1 = 0 8 3 + a b − b 2 = 8 3 + b ( a − b ) = 8 3 − 2 b = 0 ⟹ b = 4 3 ⟹ a = 4 1
Then l = − ( 1 6 5 + a b 2 − b 3 ) = − 1 6 5 − 4 1 × 1 6 9 + 6 4 2 7 = − 3 2 1 and a 1 − l 2 + 4 3 = 4 + 6 4 + 4 = 7 2 .