Another limit of sums

Calculus Level 3

lim n 1 n 2015 k = 1 n ( k + 2015 ) 2014 \large \lim_{n\to \infty}\frac{1}{n^{2015}} \sum_{k=1}^{n}(k+2015)^{2014}

The previous limit is equal to a number of the form a b \dfrac{a}{b} where a a and b b are two coprime natural numbers. Find a + b . a+b.


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pi Han Goh
Oct 12, 2015

A direct application of Stolz–Cesàro theorem should do the trick.

Let a n = k = 1 n ( k + 2015 ) 2014 \displaystyle a_n =\sum_{k=1}^n (k+2015)^{2014} and b n = n 2015 b_n = n^{2015} . Because b n b_n is a strictly monotone and divergent sequence, then Stolz–Cesàro theorem is applicable if lim n a n + 1 a n b n + 1 b n \displaystyle \lim_{n\to\infty} \dfrac{a_{n+1} - a_n}{b_{n+1} - b_n} exist.

So we have a n + 1 a n = ( n + 2016 ) 2014 a_{n+1} - a_n = (n+2016)^{2014} ,

lim n a n + 1 a n b n + 1 b n = lim n ( n + 2016 ) 2014 ( n + 1 ) 2015 n 2015 = lim n n 2014 + 2015 n 2014 + = 1 2015 \begin{aligned} \lim_{n\to\infty} \dfrac{a_{n+1} - a_n}{b_{n+1} - b_n} &=& \lim_{n\to\infty} \dfrac{ (n+2016)^{2014}}{(n+1)^{2015} - n^{2015}} \\ &=& \lim_{n\to\infty} \dfrac{ n^{2014} +\ldots }{2015n^{2014} + \ldots} \\ &=& \dfrac1{2015} \end{aligned}

which is a finite number. Hence lim n 1 n 2015 k = 1 n ( k + 2015 ) 2014 = lim n a n b n = lim n a n + 1 a n b n + 1 b n = 1 2015 \displaystyle \lim_{n\to\infty} \dfrac1{n^{2015}} \sum_{k=1}^n (k+2015)^{2014} = \lim_{n\to\infty} \dfrac{a_n}{b_n} = \lim_{n\to\infty} \dfrac{a_{n+1} - a_n}{b_{n+1} - b_n} = \dfrac1{2015} .

Moderator note:

Essentially what you are doing is simply method of differences, and calculating what the leading coefficient is.

This is very nice, Pi Han Goh!

Arturo Presa - 5 years, 8 months ago

How we have A(n+1) - A(n )..... why we have not subtracted A(n)

Dhruv Joshi - 4 years, 2 months ago

Log in to reply

Got it! The summision is included in A(n)

Dhruv Joshi - 4 years, 2 months ago
Arturo Presa
Oct 12, 2015

Notice that 1 n s k = 1 n k s 1 = k = 1 n ( k n ) s 1 1 n \frac{1}{n^{s}}\sum_{k=1}^{n}k^{s-1}=\sum_{k=1}^{n}(\frac{k}{n})^{s-1}\frac{1}{n} is the right Riemann sum of the function f ( x ) = x s 1 f(x)=x^{s-1} over the interval [ 0 , 1 ] [0,1] that corresponds to the partition { 0 , 1 n , 2 n , . . . n n } . \{0, \frac{1}{n}, \frac{2}{n}, ... \frac{n}{n}\}. Therefore lim n 1 n s k = 1 n k s 1 = 0 1 x s 1 d x = 1 s ( 1 ) \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\lim_{n\to\infty}\frac{1}{n^{s}}\sum_{k=1}^{n}k^{s-1}=\int_{0}^{1}x^{s-1}dx=\frac{1}{s}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:(1)

On the other hand, if s > r + 1 s>r+1 then lim n 1 n s k = 1 n k r = lim n 1 n s r 1 1 n r + 1 k = 1 n k r = lim n 1 n s r 1 0 1 x r d x = 0 1 r + 1 = 0 ( 2 ) \lim_{n\to\infty}\frac{1}{n^{s}}\sum_{k=1}^{n}k^{r}=\lim_{n\to\infty}\frac{1}{n^{s-r-1}}\frac{1}{n^{r+1}}\sum_{k=1}^{n}k^{r}=\lim_{n\to\infty}\frac{1}{n^{s-r-1}}*\int_{0}^{1}x^{r}dx=0*\frac{1}{r+1}=0\:\:\:\:\:\:\:\:\:\:\:\:\:\:(2)

Now using (1) and (2) we get lim n 1 n 2015 k = 1 n ( k + 2015 ) 2014 = i = 0 2014 ( ( 2014 i ) 201 5 i lim n 1 n 2015 k = 1 n k 2014 i ) = 1 2015 . \lim_{n\to \infty}\frac{1}{n^{2015}} \sum_{k=1}^{n}(k+2015)^{2014}= \sum_{i=0}^{2014}\bigg(\binom{2014}{i}*2015^{i}*\lim_{n\to \infty}\frac{1}{n^{2015}} \sum_{k=1}^{n}k^{2014-i}\bigg)=\frac{1}{2015}.

Therefore, the answer for this question is 1 + 2015 = 2016. 1+2015=2016.

Yes same approach here

Rindell Mabunga - 5 years, 8 months ago
Otto Bretscher
Oct 12, 2015

Another interesting problem!

Just an outline of a solution: The sum will be a polynomial in n + 2015 n+2015 with leading term ( n + 2015 ) 2015 2015 \frac{(n+2015)^{2015}}{2015} , but that is just a polynomial in n n with leading term n 2015 2015 \frac{n^{2015}}{2015} . After dividing by n 2015 n^{2015} we end up with 1 2015 \frac{1}{2015} plus stuff that goes to 0 as n n\rightarrow\infty , so that the limit is 1 2015 \frac{1}{2015} , with a + b = 2016 a+b=\boxed{2016} .

An easier way of expressing what you said is to use the Method of Differences .

Calvin Lin Staff - 5 years, 8 months ago

Log in to reply

Good point! Thanks! I tend to be a bit too informal and brief.

Otto Bretscher - 5 years, 8 months ago

You are right, Otto. This is the idea!

Arturo Presa - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...