Another Limit to Limit

Calculus Level 4

Given a positive integer n , n, let M ( n ) M(n) be the largest integer m m such that

( m n 1 ) > ( m 1 n ) . \binom{m}{n-1}>\binom{m-1}{n}.

Then lim n M ( n ) n = a + b c \displaystyle \lim_{n\to\infty}\frac{M(n)}{n}=\frac{a+\sqrt{b}}c , where a a , b b , and c c are coprime integers. Find a + b + c a+b+c .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Similar solution with @Aaghaz Mahajan 's

Consider the inequality

( m n 1 ) > ( m 1 n ) m ! ( n 1 ) ! ( m n + 1 ) ! > ( m 1 ) ! n ! ( m n 1 ) ! m ( m n ) ( m n + 1 ) > 1 n m n > m 2 2 n m + n 2 + m n Rearranging m 3 ( 3 n 1 ) m + ( n 2 n ) < 0 m < 3 n 1 + ( 3 n 1 ) 2 4 ( n 2 n ) 2 M ( n ) < 3 n 1 + 5 n 2 2 n + 1 2 lim n M ( n ) n = lim n 3 n 1 + 5 n 2 2 n + 1 2 n = 3 + 5 2 \begin{aligned} \binom m{n-1} & > \binom {m-1}n \\ \frac {m!}{(n-1)!(m-n+1)!} & > \frac {(m-1)!}{n!(m-n-1)!} \\ \frac m{(m-n)(m-n+1)} & > \frac 1n \\ mn & > m^2 - 2nm + n^2 + m - n & \small \color{#3D99F6} \text{Rearranging} \\ m^3 - (3n-1)m + (n^2-n) & < 0 \\ \implies m & < \frac {3n-1+\sqrt{(3n-1)^2-4(n^2-n)}}2 \\ M(n) & < \frac {3n-1+\sqrt{5n^2-2n+1}}2 \\ \implies \lim_{n \to \infty} \frac {M(n)}n & = \lim_{n \to \infty} \frac {3n-1+\sqrt{5n^2-2n+1}}{2n} = \frac {3+\sqrt 5}2 \end{aligned}

Therefore a + b + c = 3 + 5 + 2 = 10 a+b+c = 3+5+2 = \boxed{10} .

Aaghaz Mahajan
Mar 2, 2019

We need

m ! ( n 1 ) ! ( m n + 1 ) ! > ( m 1 ) ! n ! ( m n 1 ) ! \frac{m!}{\left(n-1\right)!\cdot\left(m-n+1\right)!}>\frac{\left(m-1\right)!}{n!\cdot\left(m-n-1\right)!}

After simplifying, we need to solve for m in the quadratic inequality

m 2 ( 3 n 1 ) m + ( n 2 n ) < 0 m^2-\left(3n-1\right)m+\left(n^2-n\right)<0

For, the largest value of m for a given n, we simply need the bigger root of the inequality given.....i.e.

M ( n ) = 3 n 1 + 5 n 2 2 n + 1 2 M\left(n\right)=\frac{3n-1+\sqrt{5n^2-2n+1}}{2}

Now, simply taking the limit of the desired expression, we get the value of the limit, 3 + 5 2 \displaystyle \boxed{\frac{3+\sqrt{5}}{2}}

@Pi Han Goh Sir, is this better??

Aaghaz Mahajan - 2 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...