What Pascal Identity Should I use?

Let b k , n b_{k,n} be the k th k^\text{th} element of the n th n^\text{th} row of Pascal's triangle, with row 1 1 being { 1 } , \{1\}, row 2 2 being { 1 , 1 } , \{1,1\}, etc. Also, the 1 st 1^\text{st} element of each row is 1. 1.

Find the value of

( b 3 , 2015 ) 2 i = 1 2013 i 3 . (b_{3,2015})^2 - \sum_{i=1}^{2013} i^3.

Details and Assumptions:

  • For example, b 1 , 1 = 1 , b 2 , 3 = 2 , b_{1,1} = 1, b_{2,3} = 2, and b 5 , 6 = 5. b_{5,6} = 5.

Image Credit: Wikipedia Pascal Triangle


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pascal's triangle gives the binomial coefficients. Therefore,

b k , n = ( n 1 k 1 ) b_{k,n} = \begin{pmatrix} n-1 \\ k-1 \end{pmatrix}

b 3 , 2015 i = 1 2013 i 3 ( 2014 2 ) 2 ( 2013 × 2014 2 ) 2 ( 2013 × 2014 2 ) 2 ( 2013 × 2014 2 ) 2 = 0 \Rightarrow b_{3, 2015} - \displaystyle \sum_{i=1}^{2013} {i^3} \quad \Rightarrow \begin{pmatrix} 2014 \\ 2 \end{pmatrix}^2 - \left( \dfrac {2013\times 2014}{2} \right)^2 \\ \Rightarrow \left( \dfrac {2013\times 2014}{2} \right)^2 - \left( \dfrac {2013\times 2014}{2} \right)^2 = \boxed{0}

n 1 C k 1 = b k , n ^{n - 1}C_{k - 1} = b_{k, n}

Shubhrajit Sadhukhan - 4 months, 3 weeks ago

Yes, but the C C notation is obsolete. We use \binom {n-1}{k-1} ( n 1 k 1 ) \binom {n-1}{k-1} or \dbinom {n-1}{k-1} ( n 1 k 1 ) \dbinom {n-1}{k-1} ("d" for display).

Chew-Seong Cheong - 4 months, 3 weeks ago
Caleb Townsend
Mar 3, 2015

It's actually very simple if you can see the identities involved. All of the following can be proven by induction if you wish.

Note that b 3 , n + 2 = T n , n 0 b_{3,n+2} = T_n,\ n\geq 0 where T n T_n is the n n th triangular number. Therefore b 3 , 2015 = T 2013 . b_{3,2015} = T_{2013}.

Also, i = 1 n i 3 = T n 2 . \sum_{i=1}^n i^3 = T_n^2. Therefore i = 1 2013 i 3 = T 2013 2 . \sum_{i=1}^{2013} i^3 = T_{2013}^2. T 2013 2 T 2013 2 = 0 T_{2013}^2 - T_{2013}^2 = \boxed{0}

You could also use b k , n = ( n 1 k 1 ) b_{k,n} = {n-1 \choose k-1}

Rajdeep Dhingra - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...