Another Pattern

Algebra Level 4

1 1 × 2 × 3 + 1 2 × 3 × 4 + 1 3 × 4 × 5 + . . . + 1 98 × 99 × 100 \frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + ... +\frac{1}{98 \times 99 \times 100} .

The expression above can be expressed in a form of 1 p 1 q \dfrac{1}{p} - \dfrac{1}{q} , where p p and q q are positive integers. Find the value of p + q p+q .


Try another problem on my set Let's Practice


The answer is 19804.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

S = 1 1 × 2 × 3 + 1 2 × 3 × 4 + 1 3 × 4 × 5 + . . . + 1 98 × 99 × 100 = n = 1 98 1 n ( n + 1 ) ( n + 2 ) Using partial fractions = 1 2 n = 1 98 ( 1 n 2 n + 1 + 1 n + 2 ) = 1 2 n = 1 98 ( 1 n 1 n + 1 1 n + 1 + 1 n + 2 ) By telescoping = 1 2 ( 1 1 1 99 1 2 + 1 100 ) = 4949 19800 = 4950 1 19800 Multiply up and down by 4 = 19800 4 4 ( 19800 ) Note that 1 p 1 q = q p p q = 1 4 1 19800 \begin{aligned} S & = \frac 1{1\times 2\times 3} + \frac 1{2\times 3\times 4} + \frac 1{3\times 4\times 5} + ... + \frac 1{98\times 99\times 100} \\ & = \sum_{n=1}^{98} \frac 1{n(n+1)(n+2)} \quad \quad \small \color{#3D99F6} \text{Using partial fractions} \\ & = \frac 12 \sum_{n=1}^{98} \left( \frac 1n - \frac 2{n+1} + \frac 1{n+2} \right) \\ & = \frac 12 \sum_{n=1}^{98} \left( \frac 1n - \frac 1{n+1} - \frac 1{n+1} + \frac 1{n+2} \right) \quad \quad \small \color{#3D99F6} \text{By telescoping} \\ & = \frac 12 \left( \frac 11 - \frac 1{99} - \frac 12 + \frac 1{100} \right) \\ & = \frac {4949}{19800} \\ & = \frac {4950-1}{19800} \quad \quad \small \color{#3D99F6} \text{Multiply up and down by 4} \\ & = \frac {19800-4}{4(19800)} \quad \quad \small \color{#3D99F6} \text{Note that } \frac 1p - \frac 1q = \frac {q-p}{pq} \\ & = \frac 14 - \frac 1{19800} \end{aligned}

p + q = 4 + 19800 = 19804 \implies p+q = 4+19800 = \boxed{19804}

First, let's determine the pattern.

1 1 × 2 × 3 = 1 6 \frac{1}{1 \times 2 \times 3} = \frac{1}{6}

1 1 × 2 × 3 + 1 2 × 3 × 4 = 5 24 \frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} = \frac{5}{24}

Then, we have the pattern

1 1 × 2 × 3 + 1 2 × 3 × 4 + . . . + 1 ( n 2 ) ( n 1 ) ( n ) \frac{1}{1\times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + ... + \frac{1}{(n-2)(n-1)(n)}

= ( 1 2 1 ( n ) ( n 1 ) ) ( 1 2 ) = \left( \frac{1}{2} - \frac{1}{(n)(n-1)} \right)\left( \frac{1}{2} \right) .

Now, put n = 100 n=100 , we have

( 1 2 1 9900 ) ( 1 2 ) \left( \frac{1}{2} - \frac{1}{9900} \right)\left( \frac{1}{2} \right)

= 1 4 1 19800 = 1 p 1 q = \frac{1}{4} - \frac{1}{19800} = \frac{1}{p} - \frac{1}{q}

p = 4 p = 4 and q = 19800 q = 19800

Hence, the answer is p + q = 19804 p + q = \boxed{19804} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...