Another prime year sum!

( 2017 0 ) ( 2016 1 ) + ( 2015 2 ) ( 2014 3 ) + + ( 1009 1008 ) = ? \displaystyle \binom{2017}{0} - \binom{2016}{1} + \binom{2015}{2} - \binom{2014}{3} + \cdots + \binom{1009}{1008} = \, ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kartik Sharma
Feb 18, 2017

Let us define

S n = ( n 0 ) ( n 1 1 ) + + ( 1 ) n / 2 ( n n / 2 n / 2 ) \displaystyle S_n = \binom{n}{0} - \binom{n-1}{1} + \cdots + {(-1)}^{\left \lfloor n/2 \right \rfloor} \binom{n - \left \lfloor n/2 \right \rfloor}{\left \lfloor n/2 \right \rfloor}

For n = 2 m n=2m ,

S 2 m = ( 2 m 0 ) ( 2 m 1 1 ) + + ( 1 ) m ( m m ) \displaystyle S_{2m} = \binom{2m}{0} - \binom{2m-1}{1} + \cdots + {(-1)}^m \binom{m}{m}

S 2 m 1 = ( 2 m 1 0 ) ( 2 m 2 1 ) + + ( 1 ) m 1 ( m m 1 ) \displaystyle S_{2m-1} = \binom{2m-1}{0} - \binom{2m-2}{1} + \cdots + {(-1)}^{m-1} \binom{m}{m-1}

S 2 m 2 = ( 2 m 2 0 ) ( 2 m 3 1 ) + + ( 1 ) m 1 ( m 1 m 1 ) \displaystyle S_{2m-2} = \binom{2m-2}{0} - \binom{2m-3}{1} + \cdots + {(-1)}^{m-1} \binom{m-1}{m-1}

Therefore,

S 2 m 1 S 2 m 2 = ( 2 m 1 0 ) ( 2 m 1 1 ) + ( 2 m 2 2 ) + ( 1 ) m 1 ( m + 1 m 1 ) ( 1 ) m 1 ( m 1 m 1 ) \displaystyle S_{2m-1} - S_{2m-2} = \binom{2m-1}{0} - \binom{2m-1}{1} + \binom{2m-2}{2} - \cdots + {(-1)}^{m-1}\binom{m+1}{m-1} - {(-1)}^{m-1} \binom{m-1}{m-1}

Since ( 2 m 1 0 ) = ( 2 m 0 ) \binom{2m-1}{0} = \binom{2m}{0} ,

S 2 m 1 S 2 m 2 = S 2 m ( 1 ) m ( m m ) ( 1 ) m 1 ( m 1 m 1 ) \displaystyle S_{2m-1} - S_{2m-2} = S_{2m} - {(-1)}^m \binom{m}{m} - {(-1)}^{m-1} \binom{m-1}{m-1}

S 2 m 1 = S 2 m + S 2 m 2 S_{2m-1} = S_{2m} + S_{2m-2}

For n = 2 m + 1 n=2m+1 ,

S 2 m + 1 = ( 2 m + 1 0 ) ( 2 m 1 ) + + ( 1 ) m ( m + 1 m ) \displaystyle S_{2m+1} = \binom{2m+1}{0} - \binom{2m}{1} + \cdots + {(-1)}^{m} \binom{m+1}{m}

S 2 m = ( 2 m 0 ) ( 2 m 1 1 ) + + ( 1 ) m ( m m ) \displaystyle S_{2m} = \binom{2m}{0} - \binom{2m-1}{1} + \cdots + {(-1)}^m \binom{m}{m}

S 2 m 1 = ( 2 m 1 0 ) ( 2 m 2 1 ) + + ( 1 ) m 1 ( m m 1 ) \displaystyle S_{2m-1} = \binom{2m-1}{0} - \binom{2m-2}{1} + \cdots + {(-1)}^{m-1} \binom{m}{m-1}

S 2 m S 2 m 1 = ( 2 m 0 ) ( 2 m 1 ) + + ( 1 ) m ( m + 1 m ) \displaystyle S_{2m} - S_{2m-1} = \binom{2m}{0} - \binom{2m}{1} + \cdots + {(-1)}^{m} \binom{m+1}{m}

S 2 m S 2 m 1 = S 2 m + 1 \displaystyle S_{2m} - S_{2m-1} = S_{2m+1}

S 2 m = S 2 m 1 + S 2 m + 1 \displaystyle S_{2m} = S_{2m-1} + S_{2m+1}

Hence, our recurrence relation for S n S_n becomes,

S n = S n 1 + S n + 1 , n 2 \displaystyle S_n = S_{n-1} + S_{n+1}, n\geq 2

S 1 = 1 , S 2 = 0 \displaystyle S_1 = 1, S_2 = 0

Characteristic equation becomes - x 2 x + 1 = 0 x^2 - x + 1 =0

S n = A z n + B z n \displaystyle \implies S_n = A z^n + B z^{-n} , where z = 1 + 3 ι 2 = e i π / 3 z = \frac{1 + \sqrt{3}\iota}{2} = e^{i\pi/3}

S 1 = A e i π / 3 + B e i π / 3 = 1 \displaystyle S_1 = A e^{i\pi/3} + B e^{-i\pi/3} = 1

S 2 = A e 2 i π / 3 + B e 2 i π / 3 = 0 \displaystyle S_2 = A e^{2i\pi/3} + B e^{-2i\pi/3} = 0

A = 1 1 + e i π / 3 , B = e i π / 3 1 + e i π / 3 \displaystyle \implies A = \frac{1}{1+e^{i\pi/3}}, B = \frac{e^{i\pi/3}}{1+e^{i\pi/3}}

S n = e n i π / 3 1 + e i π / 3 + e ( 1 n ) i π / 3 1 + e i π / 3 \displaystyle S_n = \frac{e^{ni\pi/3}}{1 + e^{i\pi/3}} + \frac{e^{(1-n)i\pi/3}}{1+e^{i\pi/3}}

S n = sin ( n π 3 ) 3 + cos ( n π 3 ) \displaystyle S_n = \frac{\sin\left(\frac{n\pi}{3}\right)}{\sqrt{3}} + \cos\left(\frac{n\pi}{3}\right)

What would be the answer if I replace all negative signs with positive signs?

Shourya Pandey - 4 years, 3 months ago

Log in to reply

You'll get Fibonacci numbers I think.

Atomsky Jahid - 4 years, 3 months ago

Can you elaborate from the 'characteristic equation' ? What does it mean and how did you get this ?

Vishal Yadav - 4 years, 2 months ago

Log in to reply

Check this out!

Kartik Sharma - 4 years, 2 months ago

We could do it without recurrence relations too though it gets a bit tedious. Great problem!

Thomas Jacob - 3 years, 2 months ago

Log in to reply

@Thomas Jacob Please share your solution.

Ankit Kumar Jain - 3 years, 2 months ago

Fabulous..

Ayush Kumar - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...