Another Putnam Problem

Algebra Level 3

Let d n d_n be the determinant of the n × n n \times n matrix whose entries, from left to right and then from top to bottom, are cos 1 , cos 2 , , cos n 2 \cos 1, \cos 2, \dots, \cos n^2 . (For example, d 3 = cos 1 cos 2 cos 3 cos 4 cos 5 cos 6 cos 7 cos 8 cos 9 . d_3 = \left| \begin{matrix} \cos 1 & \cos 2 & \cos 3 \\ \cos 4 & \cos 5 & \cos 6 \\ \cos 7 & \cos 8 & \cos 9 \end{matrix} \right|. The argument of cos \cos is always in radians, not degrees.) Evaluate: lim n d n = ? \lim_{n\to\infty} d_n =? .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Apr 28, 2019

Suppose that n 3 n \ge 3 . The entries in the j j th row of the initial matrix M n M_n are r j = ( cos ( n ( j 1 ) + 1 ) , cos ( n ( j 1 ) + 2 ) , cos ( n ( j 1 ) + 3 ) , , cos ( n ( j 1 ) + n ) ) r_j \;= \; \left(\cos\big(n(j-1)+1\big)\,,\,\cos\big(n(j-1)+2\big)\,,\,\cos\big(n(j-1)+3\big)\,,\,\ldots\,,\,\cos\big(n(j-1)+n\big)\right) Thus the k k th element of r j cos ( n ( j 1 ) ) r 1 r_j - \cos\big(n(j-1)\big)r_1 is cos ( n ( j 1 ) + k ) cos ( n ( j 1 ) ) cos k = sin ( n ( j 1 ) ) sin k \cos\big(n(j-1) + k\big) - \cos\big(n(j-1)\big)\cos k \; = \; -\sin\big(n(j-1)\big)\sin k and hence we see that r j cos ( n ( j 1 ) ) r 1 = sin ( n ( j 1 ) ) s r_j - \cos\big(n(j-1)\big)r_1 \; = \; -\sin\big(n(j-1)\big) s where s = ( sin 1 , sin 2 , sin 3 , , sin n ) s \; = \; \big(\sin 1\,,\,\sin2\,,\,\sin3\,,\,\ldots\,,\,\sin n\big) Thus, applying elementary row operations, d e t M n \mathrm{det}\,M_n is equal to the determinant of the matrix whose rows are r 1 , r 2 cos n r 1 , r 3 cos 2 n r 1 , r 4 cos 3 n r 1 , , r n cos ( ( n 1 ) n ) r 1 r_1\,,\, r_2 - \cos n\;r_1\,,\,r_3 - \cos2n\;r_1\,,\,r_4 - \cos3n\;r_1\,,\,\ldots\,,\,r_n - \cos\big((n-1)n\big)r_1 namely the matrix whose rows are r 1 , sin n s , sin 2 n s , sin 3 n s , , sin ( ( n 1 ) n ) s r_1\,,\, - \sin n\;s\,,\,- \sin2n\;s\,,\,- \sin3n\;s\,,\,\ldots\,,\ - \sin\big((n-1)n\big)s Since all the rows except the first are multiples of each other, this determinant is 0 0 . Thus we deduce that d n = 0 d_n = 0 for n 3 n \ge 3 , and hence lim n d n = 0 \lim_{n \to \infty} d_n \; = \; \boxed{0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...