Let d n be the determinant of the n × n matrix whose entries, from left to right and then from top to bottom, are cos 1 , cos 2 , … , cos n 2 . (For example, d 3 = ∣ ∣ ∣ ∣ ∣ ∣ cos 1 cos 4 cos 7 cos 2 cos 5 cos 8 cos 3 cos 6 cos 9 ∣ ∣ ∣ ∣ ∣ ∣ . The argument of cos is always in radians, not degrees.) Evaluate: n → ∞ lim d n = ? .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Suppose that n ≥ 3 . The entries in the j th row of the initial matrix M n are r j = ( cos ( n ( j − 1 ) + 1 ) , cos ( n ( j − 1 ) + 2 ) , cos ( n ( j − 1 ) + 3 ) , … , cos ( n ( j − 1 ) + n ) ) Thus the k th element of r j − cos ( n ( j − 1 ) ) r 1 is cos ( n ( j − 1 ) + k ) − cos ( n ( j − 1 ) ) cos k = − sin ( n ( j − 1 ) ) sin k and hence we see that r j − cos ( n ( j − 1 ) ) r 1 = − sin ( n ( j − 1 ) ) s where s = ( sin 1 , sin 2 , sin 3 , … , sin n ) Thus, applying elementary row operations, d e t M n is equal to the determinant of the matrix whose rows are r 1 , r 2 − cos n r 1 , r 3 − cos 2 n r 1 , r 4 − cos 3 n r 1 , … , r n − cos ( ( n − 1 ) n ) r 1 namely the matrix whose rows are r 1 , − sin n s , − sin 2 n s , − sin 3 n s , … , − sin ( ( n − 1 ) n ) s Since all the rows except the first are multiples of each other, this determinant is 0 . Thus we deduce that d n = 0 for n ≥ 3 , and hence n → ∞ lim d n = 0