Another Rightmost Long Division

Logic Level 2

Above shows a long division. What is the sum of all the missing digits?


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chung Kevin
Apr 15, 2016

0 6 0 0 \enclose l o n g d i v 0 7 0 8 9 \LARGE{ \begin{array}{rll} \phantom{0}\ \color{#D61F06}{\boxed{{6}}} && \\[-2pt] \color{#D61F06}{\boxed{\phantom0}\ \boxed{\phantom0}}\ \enclose{longdiv}{\boxed{\phantom0} \ \boxed{7}}\kern-.2ex \\[-2pt] \underline{\color{#D61F06}{\boxed{\phantom0} \ \boxed{8}}} && \\[-2pt] \boxed{9} \end{array} }

Looking at the red highlighted numbers as shown above, we see that a 2-digit positive integer multiply by 6 gives another 2-digit integer. Let x x and y y denote these aforementioned integers respectively, then 6 x = y < 100 6x = y< 100 . So 6 x < 100 6x < 100 or equivalently x < 100 6 = 16 + 2 3 x < \dfrac{100}6 = 16 + \dfrac23 . Thus x = 10 , 11 , 12 , , 16 x=10,11,12,\ldots, 16 only.

Since the multiplication of x x and 6 gives a last digit of 8, then by trial and error, of all the numbers 10 , 11 , , 16 10,11,\ldots,16 , only 13 13 satisfy this constraint. hence x = 16 x=16 and so y = 6 x = 78 y = 6x =78 . We can now fill in some some brackets in the long division:

0 6 1 3 \enclose l o n g d i v 0 7 7 8 9 \LARGE{ \begin{array}{rll} \phantom{0}\ \boxed{{6}} && \\[-2pt] \boxed{1}\ \boxed{3}\ \enclose{longdiv}{\color{#3D99F6}{\boxed{\phantom0} \ \boxed{7}}}\kern-.2ex \\[-2pt] \underline{\color{#3D99F6}{\boxed{7} \ \boxed{8}}} && \\[-2pt] \color{#3D99F6}{\boxed{9}} \end{array} }

Looking at the blue highlighted numbers. We know that 0 7 78 = 9 \boxed{\phantom0} 7 - 78 = 9 , or equivalently 0 7 = 78 + 9 = 87 \boxed{\phantom0} 7 = 78 + 9 = 87 , thus the remaining missing digit is 8. And now we can complete the entire long division:

0 6 1 3 \enclose l o n g d i v 8 7 7 8 9 \LARGE{ \begin{array}{rll} \phantom{0}\ \boxed{{6}} && \\[-2pt] \boxed{1}\ \boxed{3}\ \enclose{longdiv}{{\boxed{8} \ \boxed{7}}}\kern-.2ex \\[-2pt] \underline{{\boxed{7} \ \boxed{8}}} && \\[-2pt] {\boxed{9}} \end{array} }

The sum of all the missing digits is 1 + 3 + 8 + 7 = 19 1+3+8+7 = \boxed{19} .

Severina Effendi
Apr 13, 2016

It's 87/13

Varun M
Apr 11, 2016

The answer is 1+3+7+8=19. The equation is 98/13 which gives remainder 9 and quotient=6

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...