Another russianal limit

Calculus Level 1

Evaluate the limit lim x 1 x 2015 1 x 1 \displaystyle \lim_{x \rightarrow 1} \dfrac{x^{2015}-1}{x-1} .


The answer is 2015.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

lim x 1 x 2015 1 x 1 = lim x 1 ( x 1 ) ( x 2014 + x 2013 + x 2012 + . . . + x 2 + x + 1 ) x 1 = 2015 \displaystyle\lim_{x\to 1}\frac{x^{2015}-1}{x-1}=\displaystyle\lim_{x\to 1}\frac{(x-1)(x^{2014}+x^{2013}+x^{2012}+...+x^{2}+x+1)}{x-1}=2015

L'Hopital's rule also makes the problem very easy! The numerator becomes 2015 x 2014 2015x^{2014} and the denominator 1 1 after differentiating numerator and denominator.

Hobart Pao - 5 years, 8 months ago

Log in to reply

I used to solve limits without L'hôpital's rule, is like my last tool for solving limits xd

Hjalmar Orellana Soto - 5 years, 8 months ago

Nice solution!

Hobart Pao - 5 years, 8 months ago
Michael Fuller
Sep 28, 2015

We can apply L'Hôpital's rule which states lim x c f ( x ) g ( x ) = lim x c f ( x ) g ( x ) \large \lim _{ x\rightarrow c }{ \frac { f\left( x \right) }{ g\left( x \right) } } =\lim _{ x\rightarrow c }{ \frac { f^{ ' }\left( x \right) }{ g^{ ' }\left( x \right) } }

lim x 1 x 2015 1 x 1 = lim x 1 2015 x 2014 1 = 2015 \large \lim _{ x\rightarrow 1 }{ \frac { { x }^{ 2015 }-1 }{ x-1 } } =\lim _{ x\rightarrow 1 }{ \frac { 2015{ x }^{ 2014 } }{ 1 } } =\color{#20A900}{\boxed{2015}}

Ayon Ghosh
Mar 9, 2017

We simply use the property:

There is an elementary proof for this as well by taking x x = = 1 + h 1+h where h h is infinitesimally small.Then the expression changes to ( 1 + h ) n 1 h \frac{(1+h)^n - 1}{h} (we converted it from x x to h h ).We can expand numerator using Binomial Expansion.After expanding we cancel out h h from numerator and denominator.The final result is But since h h tends to 0 0 the limit reduces to n n .

Q . E . D . Q.E.D.

Lok Lok Li
Oct 25, 2018

lim x→1 (x^2015-1)/(x-1) =lim x→1 d/dx(x^2015-1)/d/dx(x-1) =lim x→1 2015x/1=2015

Aakhyat Singh
Sep 1, 2017

We know, Lim (x^n-a^n)/(x-a)=n a^(n-1) [as x->a] So,the answer would be 2015 (1)^2014=2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...