Not Wallis Product

Algebra Level 4

1 + 1 5 + 1 × 3 5 × 10 + 1 × 3 × 5 5 × 10 × 15 + 1 + \frac {1}{5} + \frac {1 \times 3}{5 \times 10} + \frac {1 \times 3 \times 5}{5 \times 10 \times 15} + \cdots

The series above can be expressed in the for of a b \sqrt{ \dfrac a b } , where a a and b b are coprime positive integers.

What is the value of a + b a+b ?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

U Z
Feb 4, 2015

1 + 1 2 × ( 2 5 ) 1 + 1 2 × 3 2 1 × 2 ( 2 5 ) 2 + 1 2 × 3 2 × 5 2 1 × 2 × 3 ( 2 5 ) 3 + . . . 1 + \dfrac{1}{2} \times \left(\dfrac{2}{5}\right)^1 + \dfrac{\dfrac{1}{2}\times \dfrac{3}{2}}{1\times2}\left(\dfrac{2}{5}\right)^2 + \dfrac{\dfrac{1}{2}\times \dfrac{3}{2}\times \dfrac{5}{2}}{1\times2\times 3}\left(\dfrac{2}{5}\right)^3 + ...

= 1 + 1 2 × ( 2 5 ) 1 + 1 2 × ( 1 + 1 2 ) 1 × 2 ( 2 5 ) 2 + 1 2 × ( 1 + 1 2 ) × ( 1 2 + 1 ) 1 × 2 × 3 ( 2 5 ) 3 + = 1 + \dfrac{1}{2} \times \left(\dfrac{2}{5}\right)^1 + \dfrac{\dfrac{1}{2}\times\left( 1+ \dfrac{1}{2}\right)}{1\times2}\left(\dfrac{2}{5}\right)^2 + \dfrac{\dfrac{1}{2}\times\left(1 + \dfrac{1}{2}\right)\times \left( \dfrac{1}{2} + 1\right)}{1\times2\times 3}\left(\dfrac{2}{5}\right)^3 + \cdots

= ( 1 2 5 ) 1 2 = \left(1 - \dfrac{2}{5}\right)^{\dfrac{-1}{2}}

= 5 3 = \sqrt{ \dfrac{5}{3}}

Ariel Gershon
Feb 5, 2015

Notice that each term is of the following form: k = 1 n ( 2 k 1 ) k = 1 n ( 5 k ) \dfrac{\prod_{k=1}^{n} (2k-1)}{\prod_{k=1}^{n} (5k)} = k = 1 n ( 2 k 1 ) k = 1 n ( 2 k ) ( n ! ) 5 n k = 1 n ( 2 k ) = ( 2 n ) ! ( n ! ) 5 n ( n ! ) 2 n = 1 1 0 n ( 2 n n ) =\dfrac{\prod_{k=1}^{n} (2k-1)*\prod_{k=1}^{n} (2k)}{(n!) 5^n \prod_{k=1}^{n} (2k)}=\dfrac{(2n)!}{(n!)5^n(n!)2^n}=\dfrac{1}{10^n} \binom{2n}{n} Hence we need to find s = n = 0 1 1 0 n ( 2 n n ) s = \sum_{n=0}^{\infty} \frac{1}{10^n} \binom{2n}{n} .

Now since the result is the square root of a rational number, let's find s 2 s^2 . Using the Cauchy Product (with 1 10 \frac{1}{10} as the independent variable), we get the following formula: s 2 = n = 0 1 1 0 n k = 0 n ( 2 k k ) ( 2 ( n k ) n k ) s^2 = \sum_{n=0}^{\infty} \dfrac{1}{10^n}\sum_{k=0}^{n} \binom{2k}{k} \binom{2(n-k)}{n-k} Now it can be shown that for all whole numbers n n we have: k = 0 n ( 2 k k ) ( 2 ( n k ) n k ) = 4 n \sum_{k=0}^{n}\binom{2k}{k} \binom{2(n-k)}{n-k} = 4^n (This can be proved using induction or combinatorics - I will leave it as an exercise.)

Hence we have: s 2 = n = 0 1 1 0 n 4 n = n = 0 ( 2 5 ) n = 1 1 2 5 = 5 3 s^2 = \sum_{n=0}^{\infty} \dfrac{1}{10^n}4^n = \sum_{n=0}^{\infty} \left(\dfrac{2}{5}\right)^n = \dfrac{1}{1 - \dfrac{2}{5}} = \dfrac{5}{3} Thus s = 5 3 s = \sqrt{\dfrac{5}{3}} . Hence a + b = 8 a+b = \boxed{8} .

Incredible Mind
Feb 4, 2015

(1+x)^n = 1+nx+n(n-1)x^2 /2 ....find n and x by comparison and u get sqrt(5/3)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...