Another Simple Integral

Calculus Level 2

0 3 3 x 5 d x = ? \large \int _0^3 \left| 3x-5 \right|\ dx = ?

Notation: |\cdot | denotes the absolute value function .

0 1 41 6 \frac{41}{6} 41 6 -\frac{41}{6}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 28, 2018

I = 0 3 3 x 5 d x = 0 5 3 ( 5 3 x ) d x + 5 3 3 ( 3 x 5 ) d x = [ 5 x 3 2 x 2 ] 0 5 3 + [ 3 2 x 2 5 x ] 5 3 3 = 25 3 25 6 + 27 2 15 25 6 + 25 3 = 100 50 + 81 90 6 = 41 6 \begin{aligned} I & = \int_0^3 |3x-5|\ dx \\ & = \int_0^\frac 53 (5-3x)\ dx + \int_\frac 53^3 (3x-5)\ dx \\ & = \left[5x-\frac 32 x^2\right]_0^\frac 53 + \left[\frac 32 x^2-5x\right]_\frac 53^3 \\ & = \frac {25}3 - \frac {25}{6} + \frac {27}2 - 15 - \frac {25}6 + \frac {25}3 \\ & = \frac {100-50+81-90}6 \\ & = \boxed{\dfrac {41}6} \end{aligned}

Rocco Dalto
Apr 25, 2018

Without using Calculus:

The desired area A = A R 1 + A R 2 = 1 2 ( 5 3 ) ( 5 ) + 1 2 ( 4 3 ) ( 4 ) = 25 6 + 16 6 = 41 6 A = A_{R_{1}} + A_{R_{2}} = \dfrac{1}{2}(\dfrac{5}{3})(5) + \dfrac{1}{2}(\dfrac{4}{3})(4) = \dfrac{25}{6} + \dfrac{16}{6} = \boxed{\dfrac{41}{6}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...