∫ 0 2 π cos n ( θ ) d θ
Find the value of the definite integral above, given that n is an even positive integer .
Notation : ( N M ) denotes the binomial coefficient , ( N M ) = N ! ( M − N ) ! M ! .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
(**)
I n = ∫ 0 π / 2 sin n x d x = ∫ 0 π / 2 sin n − 1 x sin x d x Using Integration by Parts:- I n = 0 − sin n − 1 x cos x ∣ 0 π / 2 + ( n − 1 ) ∫ 0 π / 2 sin n − 2 x 1 − sin 2 x cos 2 x d x
⟹ I n = ( n − 1 ) ( I n − 2 − I n ) ⟹ I n = n n − 1 ( I n − 2 )
Log in to reply
For IIT-JEE i will put n = 2 and get my answer :P
Consider w = e θ i . Then cos n θ = ( 2 w + w 1 ) n . If we expand it we got, considering that n is even:
cos n θ = 2 n ( 0 n ) ( w n + w n 1 ) + ( 1 n ) ( w n − 2 + w n − 2 1 ) + ( 2 n ) ( w n − 4 + w n − 4 1 ) + ⋯ + ( n / 2 n )
cos n θ = 2 n − 1 ( 0 n ) cos ( n θ ) + ( 1 n ) cos ( ( n − 2 ) θ ) + ( 2 n ) cos ( ( n − 4 ) θ ) + ⋯ + 2 1 ( n / 2 n )
Then, the integral becomes:
2 n − 1 1 [ n ( 0 n ) sin ( n θ ) + n − 2 ( 1 n ) sin ( ( n − 2 ) θ ) + n − 4 ( 2 n ) sin ( ( n − 4 ) θ ) + ⋯ + 2 1 ( n / 2 n ) θ ] 0 2 π
Note that sin ( k ⋅ 2 π ) = 0 for even k , so the integral becomes simply ( n / 2 n ) 2 n + 1 π .
Nice method !
\begin{aligned} I & = \int_0^\frac \pi 2 \cos^\color{#3D99F6}{n} x \ dx \quad \quad \small \color{#3D99F6}{n \text{ is an even positive integer}} \\ & = \int_0^\frac \pi 2 \sin^0 x \cos^n x \ dx \\ & = \frac12 \color{#3D99F6}{B\left(\frac12, \frac {n + 1}2 \right) \quad \quad \small B(m,n) \text{ is beta function}} \\ & = \frac {\color{#3D99F6}{\Gamma \left(\frac12 \right)} \color{#D61F06}{\Gamma \left(\frac {n+ 1}2 \right)}}{2\Gamma \left(\frac n2 + 1 \right)} \quad \quad \small \color{#3D99F6}{\Gamma (x) \text{ is gamma function}} \\ & = \frac {\color{#3D99F6}{\sqrt{\pi}}\cdot \color{#D61F06}{(n-1)!!\sqrt{\pi}}}{2\cdot \color{#D61F06}{2^\frac n2} \cdot \left(\frac n2 \right)!} \\ & = \frac {n! \pi}{2 \cdot 2^\frac n2 \cdot 2^\frac n2 \cdot \left(\frac n2 \right)!\cdot \left(\frac n2 \right)!} \\ & = \boxed{\displaystyle \binom {n}{n/2} \frac{\pi}{2^{n+1}}} \end{aligned}
There seems to be a typo in the final result. (2n n) should be (n n/2).
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Induction - Recurrence Relations
∫ 0 2 π cos n ( θ ) d θ = ∫ 0 2 π sin n ( θ ) d θ = I n ( Let )
I n = n n − 1 ( I n − 2 ) ( ∗ ∗ )
Hence,
I n = ( n n − 1 ) × ( n − 2 n − 3 ) × ( n − 4 n − 5 ) × ⋯ × ( 2 1 ) × π / 2 I 0
= ( n × ( n − 2 ) × ( n − 4 ) ⋯ × 4 × 2 ) 2 n ! × 2 π
= 2 n ( 2 n × ( 2 n − 1 ) × ( 2 n − 2 ) ⋯ × 2 × 1 ) 2 n ! × 2 π
= ( ( n / 2 ) ! ) 2 n ! 2 n + 1 π = ( n / 2 n ) 2 n + 1 π