How Many Times Do I Need To Integrate?

Calculus Level 5

0 π 2 cos n ( θ ) d θ \large{\int_{0}^{\frac{\pi}{2}} \cos^n (\theta) \, d\theta}

Find the value of the definite integral above, given that n n is an even positive integer .

Notation : ( M N ) \dbinom MN denotes the binomial coefficient , ( M N ) = M ! N ! ( M N ) ! \dbinom MN = \dfrac{M!}{N!(M-N)!} .

( n n / 2 ) π 2 n \binom{n}{n/2} \frac{\pi}{2^{n}} ( n n / 2 ) π 2 n + 1 \binom{n}{n/2} \frac{\pi}{2^{n+1}} ( 2 n n ) π 2 n + 1 \binom{2n}{n} \frac{\pi}{2^{n+1}} ( n n / 2 ) π 2 n 1 \binom{n}{n/2} \frac{\pi}{2^{n-1}} ( 2 n n ) π 2 n \binom{2n}{n} \frac{\pi}{2^{n}} ( 2 n n ) π 2 n 1 \binom{2n}{n} \frac{\pi}{2^{n-1}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rishabh Jain
Jun 12, 2016

Relevant wiki: Induction - Recurrence Relations

0 π 2 cos n ( θ ) d θ = 0 π 2 sin n ( θ ) d θ = I n ( Let ) \int_{0}^{\frac{\pi}{2}} \cos^n (\theta) d\theta=\int_{0}^{\frac{\pi}{2}} \sin^n (\theta) d\theta=I_n~(\text{Let})

I n = n 1 n ( I n 2 ) ( ) I_n=\dfrac{n-1}{n}(I_{n-2})~~(**)

Hence,

I n = ( n 1 n ) × ( n 3 n 2 ) × ( n 5 n 4 ) × × ( 1 2 ) × I 0 π / 2 \small{I_n=\left(\dfrac{n-1}{n}\right)\times\left(\dfrac{n-3}{n-2}\right)\times\left(\dfrac{n-5}{n-4}\right)\times\cdots\times\left(\dfrac{1}{2}\right)\times \underbrace{I_0}_{\large \pi/2}}

= n ! ( n × ( n 2 ) × ( n 4 ) × 4 × 2 ) 2 × π 2 \small{=\dfrac{n!}{(n\times (n-2)\times (n-4)\cdots\times 4\times 2)^2}}\times \dfrac{\pi}2

= n ! 2 n ( n 2 × ( n 2 1 ) × ( n 2 2 ) × 2 × 1 ) 2 × π 2 \small{=\dfrac{n!}{2^n(\frac n2\times (\frac n2-1)\times (\frac n2-2)\cdots\times 2\times 1)^2}}\times \dfrac{\pi}2

= n ! ( ( n / 2 ) ! ) 2 π 2 n + 1 \large =\dfrac{n!}{\left(\left(n/2\right)!\right)^2}\dfrac{\pi}{2^{n+1}} = ( n n / 2 ) π 2 n + 1 \large =\dbinom{n}{n/2} \frac{\pi}{2^{n+1}}

(**)

I n = 0 π / 2 sin n x d x \large I_n=\displaystyle\int_0^{\pi/2}\sin^n x\mathrm{d}x = 0 π / 2 sin n 1 x sin x d x =\large\displaystyle\int_0^{\pi/2}\sin^{n-1}x\color{#D61F06}{ \sin x}\mathrm{d}x Using Integration by Parts:- I n = sin n 1 x cos x 0 π / 2 0 + ( n 1 ) 0 π / 2 sin n 2 x cos 2 x 1 sin 2 x d x I_n=\underbrace{-\sin^{n-1} x\cos x|_0^{\pi/2}}_{\large 0}+(n-1)\displaystyle\int_0^{\pi/2}\sin^{n-2}x\underbrace{\cos^2x}_{\color{teal}{1-\sin^2 x}}\mathrm{d}x

I n = ( n 1 ) ( I n 2 I n ) \implies I_n=(n-1)(I_{n-2}-I_{n}) I n = n 1 n ( I n 2 ) \large \implies I_n=\dfrac{n-1}{n}(I_{n-2})

Rishabh Jain - 5 years ago

Log in to reply

For IIT-JEE i will put n = 2 n=2 and get my answer :P

Sabhrant Sachan - 5 years ago

Log in to reply

Lol.. ... :-)

Rishabh Jain - 5 years ago

Consider w = e θ i w=e^{\theta i} . Then cos n θ = ( w + 1 w 2 ) n \cos^n \theta = \left(\dfrac{w+\frac{1}{w}}{2}\right)^n . If we expand it we got, considering that n n is even:

cos n θ = ( n 0 ) ( w n + 1 w n ) + ( n 1 ) ( w n 2 + 1 w n 2 ) + ( n 2 ) ( w n 4 + 1 w n 4 ) + + ( n n / 2 ) 2 n \cos^n \theta = \dfrac{\dbinom{n}{0}(w^n+\frac{1}{w^n})+\dbinom{n}{1}(w^{n-2}+\frac{1}{w^{n-2}})+\dbinom{n}{2}(w^{n-4}+\frac{1}{w^{n-4}})+\cdots+\dbinom{n}{n/2}}{2^{n}}

cos n θ = ( n 0 ) cos ( n θ ) + ( n 1 ) cos ( ( n 2 ) θ ) + ( n 2 ) cos ( ( n 4 ) θ ) + + 1 2 ( n n / 2 ) 2 n 1 \cos^n \theta = \dfrac{\dbinom{n}{0}\cos(n\theta)+\dbinom{n}{1}\cos((n-2)\theta)+\dbinom{n}{2}\cos((n-4)\theta)+\cdots+\dfrac{1}{2}\dbinom{n}{n/2}}{2^{n-1}}

Then, the integral becomes:

1 2 n 1 [ ( n 0 ) n sin ( n θ ) + ( n 1 ) n 2 sin ( ( n 2 ) θ ) + ( n 2 ) n 4 sin ( ( n 4 ) θ ) + + 1 2 ( n n / 2 ) θ ] 0 π 2 \dfrac{1}{2^{n-1}}\left[\dfrac{\binom{n}{0}}{n}\sin(n\theta)+\dfrac{\binom{n}{1}}{n-2}\sin((n-2)\theta)+\dfrac{\binom{n}{2}}{n-4}\sin((n-4)\theta)+\cdots+\dfrac{1}{2}\dbinom{n}{n/2}\theta\right]_{0}^{\frac{\pi}{2}}

Note that sin ( k π 2 ) = 0 \sin\left(k\cdot\dfrac{\pi}{2}\right)=0 for even k k , so the integral becomes simply ( n n / 2 ) π 2 n + 1 \boxed{\dbinom{n}{n/2}\dfrac{\pi}{2^{n+1}}} .

Nice method !

Keshav Tiwari - 5 years ago
Chew-Seong Cheong
Jun 12, 2016

\begin{aligned} I & = \int_0^\frac \pi 2 \cos^\color{#3D99F6}{n} x \ dx \quad \quad \small \color{#3D99F6}{n \text{ is an even positive integer}} \\ & = \int_0^\frac \pi 2 \sin^0 x \cos^n x \ dx \\ & = \frac12 \color{#3D99F6}{B\left(\frac12, \frac {n + 1}2 \right) \quad \quad \small B(m,n) \text{ is beta function}} \\ & = \frac {\color{#3D99F6}{\Gamma \left(\frac12 \right)} \color{#D61F06}{\Gamma \left(\frac {n+ 1}2 \right)}}{2\Gamma \left(\frac n2 + 1 \right)} \quad \quad \small \color{#3D99F6}{\Gamma (x) \text{ is gamma function}} \\ & = \frac {\color{#3D99F6}{\sqrt{\pi}}\cdot \color{#D61F06}{(n-1)!!\sqrt{\pi}}}{2\cdot \color{#D61F06}{2^\frac n2} \cdot \left(\frac n2 \right)!} \\ & = \frac {n! \pi}{2 \cdot 2^\frac n2 \cdot 2^\frac n2 \cdot \left(\frac n2 \right)!\cdot \left(\frac n2 \right)!} \\ & = \boxed{\displaystyle \binom {n}{n/2} \frac{\pi}{2^{n+1}}} \end{aligned}

There seems to be a typo in the final result. (2n n) should be (n n/2).

Sal Gard - 5 years ago

Log in to reply

Yes, thanks.

Chew-Seong Cheong - 5 years ago
Shivam Mishra
Jun 14, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...