It starts with Negative?

Algebra Level 2

5 n = 2 1 10 2 n = ? \large 5 \sum_{n=-2}^\infty \frac 1 {10 \cdot 2^n} = \ ?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Mar 27, 2015

5 n = 2 1 10 ˙ 2 n = n = 2 1 2 ˙ 2 n = n = 2 1 2 ( n + 1 ) = n = 1 1 2 n = 2 + n = 0 1 2 n = 2 + 1 1 1 2 = 2 + 2 = 4 \displaystyle 5\sum_{n=-2}^\infty {\dfrac {1}{10\dot{}2^n}} = \sum_{n=-2}^\infty {\dfrac {1}{2\dot{}2^n}} = \sum_{n=-2}^\infty {\dfrac {1}{2^{(n+1)}}} = \sum_{n=-1}^\infty {\dfrac {1}{2^n}} = 2+\sum_{n=0}^\infty {\dfrac {1}{2^n}} \\ \quad \quad \quad \quad \quad \quad = 2 + \dfrac{1}{1-\frac{1}{2}} = 2+2=\boxed{4}

You can clearly factor out 1 10 \frac{1}{10} and proceed to an infinite geometric sum.

so that is, 5 n = 2 1 10 2 n \displaystyle\large 5 \sum_{n=-2}^\infty \frac 1{10 \cdot 2^n}

= 5 10 n = 2 1 2 n = 1 2 1 2 2 1 1 2 = 1 2 4 2 = 4 \displaystyle=\frac 5{10} \sum_{n=-2}^\infty \frac1{2^n} = \frac1{2} \cdot \frac{\frac{1}{2^{-2}}}{1-\frac1{2}} = \frac1{2} \cdot 4 \cdot 2 = \boxed{4}

Lucas Mayol
Apr 1, 2015

Another solution :

5 n = 2 1 10 2 n = n = 0 5 10 2 n + 5 n = 2 1 1 10 2 n \displaystyle 5 \sum_{n=-2}^\infty \frac 1 {10 \cdot 2^n} = \sum_{n=0}^\infty \frac 5 {10 \cdot 2^n} + 5 \sum_{n=-2}^{-1} \frac 1 {10 \cdot 2^n}

Ok so:

n = 0 5 10 2 n = n = 0 5 5 2 2 n = n = 0 1 2 2 n = n = 1 1 2 n = 1 2 + 1 4 + 1 8 + . . . = 1 \displaystyle \sum_{n=0}^\infty \frac 5 {10 \cdot 2^n} = \sum_{n=0}^\infty \frac 5 {5 \cdot 2 \cdot 2^n} = \sum_{n=0}^\infty \frac 1 { 2 \cdot 2^n} = \sum_{n=1}^\infty \frac 1 {2^n} = \frac 1 {2} + \frac 1 {4} + \frac 1 {8} + . . . = 1

wikipedia

And now:

5 n = 2 1 1 10 2 n = 5 ( 2 10 + 4 10 ) = 30 10 = 3 \displaystyle 5 \sum_{n=-2}^{-1} \frac 1 {10 \cdot 2^n} =5 (\frac 2 {10} + \frac 4 {10}) = \frac {30} {10} = 3

Result :

5 n = 2 1 10 2 n = 3 + 1 = 4 \displaystyle 5 \sum_{n=-2}^\infty \frac 1 {10 \cdot 2^n} = 3 + 1 = 4

Cs ಠ_ಠ Lee
Mar 29, 2015

Easy

multiply 5 by 1/(10*2^n) to get 1/2^n+1

Since n ranges from -2 and goes to infinity,

the sequence goes like so:

2, 1, 1/2, 1/4....

2+1+1/2+1/4...

the 1/2+1/4.... part (using the telescoping method)

x = 1/2 + 1/4 + 1/8... 2x = 1+ 1/2 + 1/4... 2x = 1 + x x= 1

2+1+1= 4

5 n = 2 1 10 × 2 n = 1 2 n = 2 1 2 n = 1 2 ( 1 2 2 + 1 2 1 + 1 2 0 + 1 2 1 + 1 2 2 + . . . ) 5\sum\limits_{n=-2}^\infty \frac{1}{10\times2^{n}} =\frac{1}{2}\sum\limits_{n=-2}^\infty \frac{1}{2^{n}} =\frac{1}{2}(\frac{1}{2^{-2}}+\frac{1}{2^{-1}}+\frac{1}{2^{0}}+\frac{1}{2^{1}}+\frac{1}{2^{2}}+...)

The expression inside the parentheses can be interpreted as the sum of an infinite geometric sequence with the first term 4 4 and a common ratio of 1 2 \frac{1}{2} .

Applying the formula for the sum of an infinite geometric sequence, 1 2 ( 4 1 1 2 ) = 4 \frac{1}{2}(\frac{4}{1-\frac{1}{2}})=\boxed{4}

Same as I did.

Manish Mayank - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...