Another Summation

Algebra Level 5

n = 8 1 ( n 4 ) ( n 2 ) n ( n + 2 ) ( n + 4 ) \large\displaystyle\sum_{n=8}^{ \infty}\dfrac{1}{(n-4)(n-2)n(n+2)(n+4)}

The summation above is equal to a b \dfrac{a}{b} , where gcd ( a , b ) = 1 \text{gcd}(a,b) = 1 . Find a + b a+b .


Try another problem on my set! Let's Practice


The answer is 3548519.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ankit Kumar Jain
May 26, 2017

n = 8 1 ( n 4 ) ( n 2 ) n ( n + 2 ) ( n + 4 ) \displaystyle \sum_{n=8}^{\infty} \dfrac{1}{(n-4)(n-2)n(n+2)(n+4)}

n = 8 1 8 ( n + 4 ) ( n 4 ) ( n 4 ) ( n 2 ) n ( n + 2 ) ( n + 4 ) \Rightarrow \displaystyle \sum_{n=8}^{\infty} \dfrac18\cdot \dfrac{(n+4) - (n-4)}{(n-4)(n-2)n(n+2)(n+4)}

n = 8 1 8 ( 1 ( n 4 ) ( n 2 ) n ( n + 2 ) 1 ( n 2 ) n ( n + 2 ) ( n + 4 ) ) \Rightarrow \displaystyle \sum_{n=8}^{\infty} \dfrac18\cdot\left(\dfrac1{(n-4)(n-2)n(n+2)} - \dfrac1{(n-2)n(n+2)(n+4)}\right)

1 8 ( 1 4 6 8 10 + 1 5 7 9 11 ) \Rightarrow \dfrac18\cdot\left(\dfrac1{4\cdot6\cdot8\cdot10} + \dfrac1{5\cdot7\cdot9\cdot11}\right)

359 3548160 \Rightarrow \boxed{\dfrac{359}{3548160}}

did the same way

I Gede Arya Raditya Parameswara - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...