Another Summation (Part 2)

Algebra Level 4

m = 1 m 2 2 m \large \displaystyle \sum_{m=1}^{\infty} \dfrac{m^2}{2^m}

The summation above is equal to a b + c \dfrac{a}{b} + c , where a , b , c a,b,c are integers, with a a and b b positive and gcd ( a , b ) = 1 \text{gcd}(a,b) = 1 , and 0 c < 1 0 \leq c <1 . Find a + b c a+b-c .

P.S. Don't get tricked!


Try another problem on my set Let's Practice


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 24, 2017

We know that for 1 < x < 1 -1 < x < 1 :

m = 0 x m = 1 1 x Differentiating both sides w.r.t. x m = 1 m x m 1 = 1 ( 1 x ) 2 Multiplying both sides by x m = 1 m x m = x ( 1 x ) 2 Differentiating both sides w.r.t. x m = 1 m 2 x m 1 = 1 + x ( 1 x ) 3 Multiplying both sides by x m = 1 m 2 x m = x ( 1 + x ) ( 1 x ) 3 Putting x = 1 2 m = 1 m 2 2 m = 1 2 3 2 1 8 = 6 \begin{aligned} \sum_{m=0}^\infty x^m & = \frac 1{1-x} & \small \color{#3D99F6} \text{Differentiating both sides w.r.t. }x \\ \sum_{m=1}^\infty m x ^{m-1} & = \frac 1{(1-x)^2} & \small \color{#3D99F6} \text{Multiplying both sides by }x \\ \sum_{m=1}^\infty m x ^m & = \frac x{(1-x)^2} & \small \color{#3D99F6} \text{Differentiating both sides w.r.t. }x \\ \sum_{m=1}^\infty m^2 x ^{m-1} & = \frac {1+x}{(1-x)^3} & \small \color{#3D99F6} \text{Multiplying both sides by }x \\ \sum_{m=1}^\infty m^2 x^m & = \frac {x(1+x)}{(1-x)^3} & \small \color{#3D99F6} \text{Putting }x = \frac 12 \\ \implies \sum_{m=1}^\infty \frac {m^2}{2^m} & = \frac {\frac 12 \cdot \frac 32}{\frac 18} = 6 \end{aligned}

a + b c = 6 + 1 0 = 7 \implies a+b-c = 6+1-0 = \boxed{7}

Upon diffrentation in the second line.... shouldn't it be negAtive?

Sid Patak - 3 years, 12 months ago

Log in to reply

Never mind sorry... ill delete this comment

Sid Patak - 3 years, 12 months ago
Zach Abueg
Apr 22, 2017

Let m = 1 m 2 2 m = S \displaystyle \sum_{m \ = \ 1}^{\infty} \frac {m^2}{2^m} = S .

The series with index m = 0 m = 0 has a 0 = 0 \displaystyle a_0 = 0 , so they are the same series:

S = m = 1 m 2 2 m = m = 0 m 2 2 m \displaystyle S = \sum_{m \ = \ 1}^{\infty} \frac {m^2}{2^m} = \sum_{m \ = \ 0}^{\infty} \frac {m^2}{2^m}

We also know that we can manipulate the index if we change n t h n^{th} term:

S = m = 1 m 2 2 m = m = 0 ( m + 1 ) 2 2 m + 1 \displaystyle S = \sum_{m \ = \ 1}^{\infty} \frac {m^2}{2^m} = \sum_{m \ = \ 0}^{\infty} \frac {(m + 1)^2}{2^{m + 1}}

Thus,

S = m = 0 m 2 2 m = m = 0 ( m + 1 ) 2 2 m + 1 \displaystyle S = \sum_{m \ = \ 0}^{\infty} \frac {m^2}{2^m} = \sum_{m \ = \ 0}^{\infty} \frac {(m + 1)^2}{2^{m + 1}}

Now let's do some rewriting:

S = 2 S S \displaystyle S = 2S - S

= m = 0 ( m + 1 ) 2 2 m m = 0 m 2 2 m \displaystyle = \sum_{m \ = \ 0}^{\infty} \frac {(m + 1)^2}{2^m} - \sum_{m \ = \ 0}^{\infty} \frac {m^2}{2^m}

= m = 0 2 m + 1 2 m \displaystyle = \sum_{m \ = \ 0}^{\infty} \frac {2m + 1}{2^m}

= m = 0 2 m 2 m + m = 0 1 2 m \displaystyle = \sum_{m \ = \ 0}^{\infty} \frac {2m}{2^m} + \sum_{m \ = \ 0}^{\infty} \frac {1}{2^m}

= 2 m = 0 1 2 m + m = 0 1 2 m \displaystyle = 2\sum_{m \ = \ 0}^{\infty} \frac {1}{2^m} + \sum_{m \ = \ 0}^{\infty} \frac {1}{2^m}

= 4 + 2 = 6 \displaystyle = 4 + 2 = 6

m = 1 m 2 2 m = 6 \displaystyle \sum_{m \ = \ 1}^{\infty} \frac {m^2}{2^m} = 6

Since 0 c < 1 \displaystyle 0 ≤ c < 1 and c c must be an integer, c = 0 c = 0 . 6 = 6 1 \displaystyle 6 = \frac 61 , so a = 6 a = 6 and b = 1 b = 1 .

a + b c = 7 \displaystyle a + b - c = \boxed{7}

Nice solution, but I am a bit confused about the equality between line 4 and 5 counting from S=2S-S. What happened to m in the first term of the 4th line?

Magne Myhren - 4 years, 1 month ago

Log in to reply

You can see by this proof without words that

m = 0 1 2 m = 2 \displaystyle \sum_{m \ = \ 0}^{\infty} \frac{1}{2^m} = 2

m = 0 2 m 2 m \displaystyle \sum_{m \ = \ 0}^{\infty} \frac{2m}{2^m} is twice the sum of m = 0 1 2 m \displaystyle \sum_{m \ = \ 0}^{\infty} \frac{1}{2^m} ; you can easily check this using partial sums.

Zach Abueg - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...